Powered by OpenAIRE graph
Found an issue? Give us feedback

Laing O'Rourke plc

Laing O'Rourke plc

34 Projects, page 1 of 7
  • Funder: UK Research and Innovation Project Code: EP/L026686/1
    Funder Contribution: 23,281 GBP

    The Climate Change Act 2008 requires a 34% cut in 1990 greenhouse gas emissions by 2020 and at least an 80% reduction in emissions by 2050. Residential and commercial buildings account for 25% and 18% of the UK's total CO2 emissions respectively and therefore have a significant role to play in a national decarbonisation strategy. As the UK has some of the oldest and least efficient buildings in Europe, there is substantial scope for improving the efficiency of energy end-use within UK buildings. However efforts to improve building energy efficiency, specifically the thermal efficiency of the building fabric, have to date focused primarily on the analysis and assessment of single properties. The slow uptake of insulation measures through the Green Deal and Energy Companies Obligation testifies to the difficulty of achieving these changes on a house-by-house basis. If the UK is to achieve its energy and climate policy targets, then a more ambitious whole-city approach to building energy improvements is needed. Technical innovations in remote sensing and infrared thermography mean that it is now possible to conduct building efficiency surveys at a mass scale. The challenge is how such data can be improved (for example moving from 2D plan imagery to 3D models of the built environment) and combined with systems analysis tools to inform effective retrofit strategies. The Urban Scale Building Energy Network will investigate this research challenge by bringing together five academic co-investigators with disciplinary expertise from across the building retrofit value chain from remote autonomous sensing to building physics, energy systems design, consumer behaviour and policy. Working with two experienced mentors from the fields of energy systems and building energy services, the co-investigators will undertake a series of activities in collaboration with project partners from industry and government to better understand the research challenge and develop roadmaps for future research. The activities include: - Two workshops and a series of bilateral meetings for the academic team to learn about each other's expertise and how it can be coordinated and brought to bear on the research challenge. The project mentors will play a crucial role here, helping the co-investigators to create personal development plans that will build both technical and non-technical skills for successful careers. - A workshop with over 20 representatives from government and industry to discuss previous experience and the perceived obstacles to more ambitious building energy retrofits. - An active online communications strategy incorporating a project website, YouTube videos, and a Twitter hashtag campaign in order to engage the general public and understand how households and commercial building occupants understand the challenge of transforming the UK's building stock. - A feasibility study to summarize the state of the art in new sensing technologies and analysis techniques for building thermal energy performance assessment and to identify major outstanding challenges for future research proposals. The proposed network will therefore facilitate collaboration between academics, industry, government and the general public to address a question of great national importance. The project outputs will help to create a wider understanding of the specific challenges facing the UK's aspirations for the transformation of its building stock as well as highlighting potentially fruitful avenues for research. The network therefore aspires to build upon this twelve-month programme of work and develop significant long-term research collaborations with benefits for academic knowledge, society and the wider economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K038656/1
    Funder Contribution: 4,980,770 GBP

    Evolution over the eons has made Nature a treasure trove of clever solutions to sustainability, resilience, and ways to efficiently utilize scarce resources. The Centre for Nature Inspired Engineering will draw lessons from nature to engineer innovative solutions to our grand challenges in energy, water, materials, health, and living space. Rather than imitating nature out of context or succumbing to superficial analogies, research at the Centre will take a decidedly scientific approach to uncover fundamental mechanisms underlying desirable traits, and apply these mechanisms to design and synthesise artificial systems that hereby borrow the traits of the natural model. The Centre will initially focus on three key mechanisms, as they are so prevalent in nature, amenable to practical implementation, and are expected to have transformational impact on urgent issues in sustainability and scalable manufacturing. These mechanisms are: (T1) "Hierarchical Transport Networks": the way nature bridges microscopic to macroscopic length scales in order to preserve the intricate microscopic or cellular function throughout (as in trees, lungs and the circulatory system); (T2) "Force Balancing": the balanced use of fundamental forces, e.g., electrostatic attraction/repulsion and geometrical confinement in microscopic spaces (as in protein channels in cell membranes, which trump artificial membranes in selective, high-permeation separation performance); and (T3) "Dynamic Self-Organisation": the creation of robust, adaptive and self-healing communities thanks to collective cooperation and emergence of complex structures out of much simpler individual components (as in bacterial communities and in biochemical cycles). Such nature-inspired, rather than narrowly biomimetic approach, allows us to marry advanced manufacturing capabilities and access to non-physiological conditions, with nature's versatile mechanisms that have been remarkably little employed in a rational, bespoke manner. High-performance computing and experimentation now allow us to unravel fundamental mechanisms, from the atomic to the macroscopic, in an unprecedented way, providing the required information to transcend empiricism, and guide practical realisations of nature-inspired designs. In first instance, three examples will be developed to validate each of the aforementioned natural mechanisms, and simultaneously apply them to problems of immediate relevance that tie in to the Grand Challenges in energy, water, materials and scalable manufacturing. These are: (1) robust, high-performance fuel cells with greatly reduced amount of precious catalyst, by using a lung-inspired architecture; (2) membranes for water desalination inspired by the mechanism of biological cell membranes; (3) high-performance functional materials, resp. architectural design (cities, buildings), informed by agent-based modelling on bacteria-inspired, resp. human communities, to identify roads to robust, adaptive complex systems. To meet these ambitious goals, the Centre assembles an interdisciplinary team of experts, from chemical and biochemical engineering, to computer science, architecture, materials, chemistry and genetics. The Centre researchers collaborate with, and seek advice from industrial partners from a wide range of industries, which accelerates practical implementation. The Centre has an open, outward looking mentality, inviting broader collaboration beyond the core at UCL. It will devote significant resources to explore the use of the validated nature-inspired mechanisms to other applications, and extend investigation to other natural mechanisms that may inform solutions to problems in sustainability and scalable manufacturing.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W022583/1
    Funder Contribution: 997,934 GBP

    Portland cement concrete is the most heavily used manufactured material on the planet after clean water, and it is integral to modern life. However, the production of 4 billion tonnes of Portland cement per year is responsible for 8% of global man-made greenhouse gas emissions. With the growing threat of climate change, there is an urgent need to decarbonise cement production. Currently, the most viable approach to reduce cement's carbon footprint involve the widespread use of supplementary cementitious materials (SCMs), such as fly ash from electricity generation and ground granulated blast furnace slag from steel manufacture. However, with decarbonisation of electricity and the decline of UK steel manufacture, these materials are becoming increasingly scarce. Therefore, we need to develop low-carbon alternatives, without disrupting construction practice nor compromising on long-term performance. This is the ultimate goal of this project. Recently, there has been growing interest in using clays as cementitious materials in the production of low-carbon concrete because they are practical, affordable, and scalable. The UK has abundant clay resources that can be easily obtained from overburdens of existing quarries and infrastructure development projects, where they are currently regarded as wastes. However, most of the clay in the UK and globally are low grade and are less reactive compared to high purity kaolinite clays. Therefore, there is a need to develop focussed solutions based on these low-grade clay deposits, rather than to depend on the importation of alternatives from thousands of miles. This project is timely since increased infrastructure activity, e.g. Crossrail, HS2, as well as driving increased demand for cement and concrete, will also lead to higher production of construction spoils that contain waste clays. Thus, we will develop new low-carbon cements from locally sourced clay-bearing construction and mining spoils. Using these in concrete production is a highly sustainable and circular solution; turning waste clays into valuable resources. The development of low-carbon cements is vital, but if these new materials are not translated from the laboratory to the construction site, then the necessary change will not arise. To achieve this, we will examine the performance of these new low-carbon cements from manufacture, through site practice to understanding long-term durability. The research team will work with industry from all along the supply chain to ensure that the newly developed materials satisfy industry requirements and are adopted as wide as possible to maximise carbon reductions of our built environment. In summary, the research team and their industrial partners will develop new cements from locally sourced low-grade waste clays to significantly reduce the carbon footprint of concrete and ensure performance along the entire lifetime of infrastructure. This will help the UK to deliver on its plans to decarbonise and achieve a net-zero economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N021614/1
    Funder Contribution: 3,163,720 GBP

    Globally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y034643/1
    Funder Contribution: 8,545,520 GBP

    Civil infrastructure is the key to unlocking net zero. To achieve the ambitious UK targets of net zero by 2050, we require innovative approaches to design, construction, and operation that prioritise energy efficiency, renewable resources, and low-carbon materials. Meeting net zero carbon emissions will require not only significant investment and planning, but also a radical shift in how we approach the design and management of our civil infrastructure. Reliable low carbon infrastructure sector solutions that meet real user needs are essential to ensure a smooth and safe transition to a net zero future. To address these challenges, the UK must develop highly skilled infrastructure professionals who can champion this urgent, complex, interconnected and cross-disciplinary transition to net zero infrastructure. This EPSRC Centre for Doctoral Training in Future Infrastructure and Built Environment: Unlocking Net Zero (FIBE3 CDT) aims to lead this transformation by co-developing and co-delivering an inspirational doctoral training programme with industry partners. FIBE3 will focus on meeting the user needs of the construction and infrastructure sector in its pursuit of net zero. Our goal is to equip emerging talents from diverse academic and social backgrounds with the skills, knowledge and qualities to engineer the infrastructure needed to unlock net zero, including technological, environmental, economic, social and demographic challenges. Achievable outcomes will include a dynamic roadmap for the infrastructure that unlocks net zero, cohort-based doctoral student training with immersive industry experience, a CDT which is firmly embedded within existing net zero research initiatives, and expanded networks and outward-facing education. These outcomes will be centred around four thematic enablers: (1) existing and disruptive/new technologies, (2) radical circularity and whole life approach, (3) AI-driven digitalisation and data, and (4) risk-based systems thinking and connectivity. FIBE3 doctoral students will be trained to unlock net zero by evolving the MRes year to include intimate industry engagement through the novel introduction of a fourth dimension to our successful 'T-shaped' training model and designing the PhD with regular outward-facing deliverables. We have leveraged industry-borne ideas to align theory and practice, streamline business and research needs, and provide both academic-led and industry-led training activities. Cohort-based training in technical, commercial, transferable and personal skills will be provided for our graduates to become skilled professionals and leaders in delivering net zero infrastructure. FIBE3's alignment with real industry needs is backed by a 31 strong consortium, including owners, consultants, contractors, technology providers and knowledge transfer partners, who actively seek engagement for solutions and will support the CDT with substantial cash (£2.56M) and in-kind (£8.88M) contributions. At Cambridge, the FIBE3 CDT will be embedded within an inspirational research and training environment, a culture of academic excellence and within a department with strategic cross-cutting research themes that have net zero ambitions at their core. This is exemplified by Cambridge's portfolio of over £60M current aligned research grant funding and our internationally renowned centres and initiatives including the Digital Roads of the Future Initiative, the Centre for Smart Infrastructure and Construction, Cambridge Zero and Cambridge Centres for Climate Repair and Carbon Credits, as well as our strong partnerships with UK universities and leading academic centres across the globe. Our proposed vision, training structure and deliverables are exciting and challenging; we are confident that we have the right team to deliver a highly successful FIBE3 CDT and to continue to develop outstanding PhD graduates who will be net zero infrastructure champions of the future.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.