Powered by OpenAIRE graph
Found an issue? Give us feedback

INVENT

INVENT INNOVATIVE VERBUNDWERKSTOFFEREALISATION UND VERMARKTUNG NEUERTECHNOLOGIEN GMBH*
Country: Germany
20 Projects, page 1 of 4
  • Funder: European Commission Project Code: 776294
    Overall Budget: 5,017,680 EURFunder Contribution: 4,993,310 EUR

    Terrestrial demands on space missions are increasing rapidly in terms of complexity, technology and velocity. Next to navigation (GPS, GALILEO), science (investigation of space and the universe) and exploration (ISS, Mars), two types of space missions are very important for Europe: Earth Observation (EO, for the sustainability of nature and mankind) and Telecommunication (TC, for business and global connectivity). Each mission requires partly unique technologies, which are produced by only very few global suppliers. If these technologies are not available from within Europe, there is a danger that non-dependent missions may not be performed, created and tailored with a consequent loss of sovereignty in political decisions and a loss of market shares. One of these so-called “Critical Technologies” is the “Large Deployable Reflector (LDR)”. Packed in stowed configurations, these reflectors can be accommodated on satellites, which then still comply with the limited launcher fairing volumes. By enlarging the size of the reflector it is possible to offer higher sensitivity and resolution, e.g. for radar missions (EO & science) and implement stronger communication links for e.g. higher data throughput (TC). Within the upcoming eight years the demand for such reflectors will increase worldwide, whereas the Consortium targets a certain market share with its “Large European Antenna (LEA)”. The proposed H2020 project would now enable the combination of the technologies previously developed by the consortium members and the joining of further European entities to fill the remaining gaps and form one strong and complete European team. Through obtaining an EC-grant for LEA, each building block will be upgraded with innovation, adapted to a scenario and qualified to meet one common target, namely: 1st European PFM (including reflector and arm) reaching TRL 8 to be ready for integration by the end of 2020 and for flight in 2021.

    more_vert
  • Funder: European Commission Project Code: 945521
    Overall Budget: 112,809,000 EURFunder Contribution: 79,628,800 EUR

    The Airframe ITD aims at re-thinking and developing the technologies as building blocks and the “solution space” on the level of the entire or holistic aircraft: pushing aerodynamics across new frontiers, combining and integrating new materials and structural techniques – and integrating innovative new controls and propulsion architectures with the airframe; and optimizing this against the challenges of weight, cost, life-cycle impact and durability.

    more_vert
  • Funder: European Commission Project Code: 218479
    more_vert
  • Funder: European Commission Project Code: 604013
    more_vert
  • Funder: European Commission Project Code: 730323
    Overall Budget: 11,944,000 EURFunder Contribution: 9,793,550 EUR

    Glass and carbon fiber reinforced polymer composites (GFRP and CFRP) are increasingly used as structural materials in many manufacturing sectors like transport, constructions and energy due to their better lightweight and corrosion resistance compared to metals. Composite recycling is a challenging task. Although mechanical grinding and pyrolysis reached a quite high TRL, landfilling of EoL composites is still widespread since no significant added value in the re-use and remanufacturing of composites is demonstrated. The FiberEUse project aims at integrating in a holistic approach different innovation actions aimed at enhancing the profitability of composite recycling and reuse in value-added products. The project is based on the realization of three macro use-cases, further detailed in eight demonstrators: Use-case 1: Mechanical recycling of short GFRP and re-use in added-value customized applications, including furniture, sport and creative products. Emerging manufacturing technologies like UV-assisted 3D-printing and metallization by Physical Vapor Deposition will be used. Use-case 2: Thermal recycling of long fibers (glass and carbon) and re-use in high-tech, high-resistance applications. The input product will be EoL wind turbine and aerospace components. The re-use of composites in automotive (aesthetical and structural components) and building will be demonstrated by applying controlled pyrolysis and custom remanufacturing. Use-case 3: Inspection, repair and remanufacturing for EoL CFRP products in high-tech applications. Adaptive design and manufacturing criteria will be implemented to allow for a complete circular economy demonstration in the automotive sector. Through new cloud-based ICT solutions for value-chain integration, scouting of new markets, analysis of legislation barriers, life cycle assessment for different reverse logistic options, FiberEUse will support industry in the transition to a circular economy model for composites.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.