
Air Liquide (France)
Air Liquide (France)
3 Projects, page 1 of 1
assignment_turned_in Project2008 - 2014Partners:C-Questor, World Wide Fund for Nature WWF, Mott Macdonald (United Kingdom), Air Liquide (France), Scottish Enterpise +10 partnersC-Questor,World Wide Fund for Nature WWF,Mott Macdonald (United Kingdom),Air Liquide (France),Scottish Enterpise,University of Edinburgh,University of Aberdeen,Scottish Enterpise,Doosan Babcock Energy Limited,Mott Macdonald (United Kingdom),Doosan (United Kingdom),C-Questor,Doosan Babcock Energy Limited,World Wide Fund for Nature WWF (UK),Air Liquide (France)Funder: UK Research and Innovation Project Code: EP/F034520/1Funder Contribution: 3,452,950 GBPEnergy supply for the UK, and for the World as a whole, will experience major changes during the next 20 years, as states seek secure energy supplies, combined with low costs, and sustainable environmental impacts. Most of world energy currently derives from combustion of fossil fuel. The UK is no exception.In the UK, fossil fuel (oil) dominates transport use, and this is unlikely to change in the near future. Electricity and heat generation is dominated by gas (41%) and coal (34%), with 20% from nuclear, only 3% from renewables, and 2% imported electricity. This gas and coal will from now onwards largely be imported, paying costs to suppliers outside the UK. This also means security of supply is not guaranteed. Can improvements be made to the use of these energy sources?A key environmental problem is that fossil fuel combustion releases CO2 to the atmosphere. This is now, beyond reasonable doubt, linked to global warming and climate change. Atmospheric CO2 also dissolves in ocean water, forcing an increased acidity greater than any time in the past 20 Million years. Even those who still do not believe in climate change cannot escape the inevitability of ocean acidification / with as yet un-predicted consequences. For this reason alone, atmospheric CO2 must be reduced.To enable continued use of fossil fuels it is an urgent requirement to de-carbonise their combustion. The Stern Review of Climate Change Economics in 2006 clearly re-stated that significant progress must be made during the ten years until 2017.This research proposal addresses the fossil fuel issues in two ways: Firstly, to create a UK Centre of university expertise in the capture of CO2 from power plants. Current industrial systems rely on chemical absorption by solvents, but require a very high energy input, which reduces the environmental gain. The Centre will focus on new technologies of CO2 separation by adsorption onto nanoporous materials, by filtration of CO2 from power plant flue gases by semi-permeable membranes, and by membrane and adsorption separation processes for the production of oxygen from air, to enable oxy-fuel combustion and efficient CO2 separation.Secondly, we acknowledge that there is, and will be, a need to remove existing CO2 emissions from the atmosphere. The reductions proposed from power plant emissions do not reduce existing CO2, but rather just make the increase slower. To control the earth atmosphere and produce a sustainable climate requires extraction of CO2 already emitted. This is routinely achieved, at low cost, by vegetation. We will create an entirely new centre of university expertise which will focus on using bio-mass from agriculture, forestry and waste. This can firstly make bio-fuel to replace fossil sources, and the residues can be pyrolised to form charcoal. Such charcoal has been used in traditional cultures to enhance soil fertility, and locks up carbon for thousands of years. Improvements in land use in the EU, the USA, and developing world can achieve this, by an integration of engineering, soil science, and social benefit to cultivators.Edinburgh (with the British Geological Survey and Heriot-Watt) already hosts the UK's largest academic centre investigating geological burial of captured CO2. There are existing multi-skilled networks at Edinburgh linking land use, agriculture, social, legal and economic analysis, chemical engineering and petroleum geoscience. Creation of the Carbon Capture Centre will be an ideal complementary activity, and the range of expertise, from atmospheric capture, to power-plant capture to cultivation and geological burial will be unique.Outputs from the Centre can help the UK to combust coal and gas with environmentally clean methods, to enhance energy security by diversifying away from fossil fuel sources, and to commence the direct clean-up of CO2 from the atmosphere in an energy and financially efficient, sustainable way.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b31e89f1d3f2db2f990144eb5fe55a7e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b31e89f1d3f2db2f990144eb5fe55a7e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2014Partners:C-Questor, Air Liquide (France), Doosan Babcock Energy Limited, Scottish Enterpise, Scottish Enterpise +11 partnersC-Questor,Air Liquide (France),Doosan Babcock Energy Limited,Scottish Enterpise,Scottish Enterpise,World Wide Fund for Nature WWF,Mott Macdonald (United Kingdom),Doosan (United Kingdom),C-Questor,Air Liquide (France),World Wide Fund for Nature WWF (UK),Heriot-Watt University,Doosan Babcock Energy Limited,Heriot-Watt University,University of Aberdeen,Mott Macdonald (United Kingdom)Funder: UK Research and Innovation Project Code: EP/F034482/1Funder Contribution: 1,089,230 GBPEnergy supply for the UK, and for the world, will experience major changes during the next 20 years. Many nations seek secure energy supplies, combined with low costs, and sustainable environmental impacts. Most of world energy currently derives from combustion of fossil fuel. The UK is no exception.In the UK, fossil fuel (oil) dominates transport use, and is difficult to change in the near future. Electricity and heat generation is dominated by gas (41%) and coal (34%), with 20% from nuclear, only 3% from renewables, and 2% imported electricity. This gas and coal will from now onwards largely be imported, paying costs to suppliers outside the UK. This also means security of supply is not guaranteed. Can improvements be made to the use of these energy sources?A key environmental problem is that fossil fuel combustion releases fossil CO2 to the atmosphere. This is now, beyond reasonable doubt, linked to global warming and climate change. Atmospheric CO2 also dissolves in ocean water, forcing an increased acidity greater than any time in the past 20 Million years. Even those who still do not believe in climate change cannot escape the inevitability of ocean acidification / with as yet un-predicted consequences. For this reason alone, atmospheric CO2 must be reduced.To enable continued use of fossil fuels, whilst renewable sources are developed, it is an urgent requirement to de-carbonise their combustion. The Stern Review of Climate Change Economics in 2006 clearly re-stated that significant progress must be made during the ten years until 2017.This research proposition addresses the fossil fuel issues in two ways: Firstly, to create a UK Centre of university expertise in the capture of CO2 from power plant. Current industrial systems rely on chemical absorption by solvents, but require a very high energy input, which reduces the environmental gain. The Centre will focus on new technologies of CO2 separation by adsorption onto nanoporous materials materials, by filtration of CO2 from power plant flue gases by newly created semi-permeable membranes, and by membrane separation of oxygen from air, to enable oxy-fuel combustion and efficient CO2 separation.Secondly, we acknowledge that there is, and will be, a need to remove existing CO2 emissions from the atmosphere. The reductions proposed from power plant emissions do not reduce existing CO2, they just make the increase slower. To control the earth atmosphere and produce a sustainable climate requires extraction of CO2 already emitted. This is routinely achieved, at low cost, by vegetation. We will create an entirely new centre of university expertise which will focus on using bio-mass from agriculture, forestry and waste. This can firstly make bio-fuel to replace fossil sources, and the residues can be pyrolised to form charcoal. Such charcoal has been used in traditional cultures to enhance soil fertility, and locks up carbon for thousands of years. Improvements in land use in the EU, USA, and developing world can achieve this, by an integration of engineering, soil science, and social benefit to cultivators.The University of Edinburgh and Heriot-Watt University already host the UK's largest academic centre investigating the geological burial of CO2 captured from power plant. There are existing multi-skilled networks in Edinburgh linking land use, agriculture, social, legal and economic analysis, chemical engineering and petroleum geoscience. Creation of the Carbon Capture Centre will be an ideal complementary activity, and the range of expertise, from atmospheric capture, to power-plant capture to cultivation and geological burial will be unique.Outputs from the Centre can help the UK to combust coal and gas with environmentally clean methods, to enhance energy security by diversifying away from fossil fuel sources, and to commence the direct clean-up of CO2 from the atmosphere in a energy efficient, and financially efficient, sustainable way.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9fe6a143813afdc8fe3d87ff68d01fa1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9fe6a143813afdc8fe3d87ff68d01fa1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2007 - 2011Partners:VBC Group (United Kingdom), BP British Petroleum, Instem Computer Systems, LONDON UNDERGROUND LIMITED, Alcoa Europe Flat Rolled Products +139 partnersVBC Group (United Kingdom),BP British Petroleum,Instem Computer Systems,LONDON UNDERGROUND LIMITED,Alcoa Europe Flat Rolled Products,Unipath Ltd,Unimatic Engineers Ltd,Cytec Engineered Materials,Comsol (United Kingdom),Air Liquide (France),AWE Aldermaston,Galorath (United Kingdom),Lotus Engineering Ltd,Alcoa (United Kingdom),MSU,Proton (United Kingdom),Amersham plc,Galorath Affiliates Ltd,Rolls-Royce (United Kingdom),Asylum Research UK Ltd,Thales,AIRBUS OPERATIONS LIMITED,Epigem (United Kingdom),De Montfort University,ArvinMeritor Automotive Light Vehicle,Tata Motors (United Kingdom),DMU,Ministry of Defence (MOD),Control 2K,Unilever Corporate Research,Defence Science & Tech Lab DSTL,Technology Partnership (United Kingdom),Rolls-Royce Plc (UK),BearingPoint (United Kingdom),GE (General Electric Company) UK,NHS Blood and Transplant,Castrol UK Ltd,CRANFIELD UNIVERSITY,Lockheed Martin (United Kingdom),Doncasters Plc,Delcam International plc,Unimatic Engineers Ltd,Cranfield University,National Physical Laboratory,Bombardier Aerospace,Renold Precision Technologies,Tecan Components Ltd,Control 2K Ltd,Scott Bader Company Ltd,Edwards,Oxford Instruments (United Kingdom),Bovis Lend Lease,Airbus (United Kingdom),Thales (United Kingdom),Unipath Ltd,Cognition Europe,Saint-Gobain Abrasives,AWE,Doncasters Plc,Amersham PLC,Unilever UK Central Resources Limited,Technology Partnership Plc (The),Mouchel (United Kingdom),Thales,Autoliv (United Kingdom),Cognition Europe,Arup Group Ltd,General Electric (United Kingdom),Lend Lease (United Kingdom),Saint-Gobain Abrasives,Abbott (United Kingdom),Comsol Ltd,Edwards,BAE Systems (Sweden),Renold Precision Technologies,Delcam (United Kingdom),Ministry of Defence,AIRBUS UK,VBC Group,Battenfeld U K Ltd,Rolls-Royce (United Kingdom),CONTOUR FINE TOOLING LIMITED,Autoliv Ltd,JAGUAR LAND ROVER LIMITED,Scott Bader,Michigan State University,Jaguar Cars,National Blood Service,Holroyd Machine Tools Gears &,ASYLUM RESEARCH UK LTD,National Blood Service,Airbus,BAE Systems (United Kingdom),Holroyd Machine Tools Gears &,Contour Fine Tooling Ltd,Accuromm UK Ltd,LCP CONSULTING LTD,Castrol (United Kingdom),Bombardier Aerospace,Tecan Components Ltd,GE Fanuc Europe SA - UK Branch,Bernard Matthews (United Kingdom),Rolls-Royce Fuel Cell Systems Ltd,Shell Research UK,Instem Computer Systems,LG Mouchel and Partners,Ministry of Defence MOD,Epigem Ltd,Lockheed Martin UK,Arup Group (United Kingdom),Halliburton KBR,NPL,ROLLS-ROYCE PLC,Defence Science and Technology Laboratory,East of England Development Agency,GKN Aerospace,Unilever (United Kingdom),Edwards (United Kingdom),Delcam International plc,BAE Sytems Electronics Ltd,Epigem Ltd,MG Rover Group Limited,BAE Systems,Halliburton KBR,[no title available],GE (General Electric Company) UK,GKN Aerospace Services Ltd,TfL,Atkins UK,BOC Edwards,CYTEC ENGINEERED MATERIALS LIMITED,Air Liquide (France),Battenfeld U K Ltd,GE Fanuc Europe SA - UK Branch,Atkins (United Kingdom),MG Rover Group Ltd,Shell (United Kingdom),Bernard Matthews,ArvinMeritor Automotive Light Vehicle,BP International,East of England Development Agency,Airbus (United Kingdom),Accuromm UK Ltd,BP (United Kingdom)Funder: UK Research and Innovation Project Code: EP/E001874/1Funder Contribution: 9,770,800 GBPThe Cranfield IMRC vision is to grow the existing world class research activity through the development and interaction between:Manufacturing Technologies and Product/Service Systems that move UK manufacturing up the value chain to provide high added value manufacturing business opportunities.This research vision builds on the existing strengths and expertise at Cranfield and is complementary to the activities at other IMRCs. It represents a unique combination of manufacturing research skills and resource that will address key aspects of the UK's future manufacturing needs. The research is multi-disciplinary and cross-sectoral and is designed to promote knowledge transfer between sectors. To realise this vision the Cranfield IMRC has two interdependent strategic aims which will be pursued simultaneously:1.To produce world/beating process and product technologies in the areas of precision engineering and materials processing.2.To enable the creation and exploitation of these technologies within the context of service/based competitive strategies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a4cd5654616ce9a4bb38b044b567eb6b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a4cd5654616ce9a4bb38b044b567eb6b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu