
SPECIFIC (Innovation and Knowledge Ctr)
SPECIFIC (Innovation and Knowledge Ctr)
9 Projects, page 1 of 2
assignment_turned_in Project2013 - 2019Partners:DSTL, NPL, Cambridge Integrated Knowledge Centre, Solvay (International Chemical Group), Plastic Logic (United Kingdom) +37 partnersDSTL,NPL,Cambridge Integrated Knowledge Centre,Solvay (International Chemical Group),Plastic Logic (United Kingdom),Eight19 Ltd,MSD (United States),Defence Science & Tech Lab DSTL,Swansea University,Oxford Lasers Ltd,National Physical Laboratory NPL,De La Rue International Ltd,Eight19 Ltd,SABMILLER PLC,3M United Kingdom Plc,Cambridge Display Technology Ltd (CDT),SABMiller plc,CPI Ltd,Merck & Co Inc,RK Print Coat Instruments Ltd,CPI Ltd,MOLECULAR VISION LIMITED,Merck & Co., Inc. (Sharp & Dohme (MSD)),CDT,UNIVERSITY OF CAMBRIDGE,Defence Science & Tech Lab DSTL,PragmatIC Printing Ltd,RK Print Coat Instruments Ltd,SPECIFIC Innovation and Knowledge Ctr,3M (United Kingdom),Plastic Logic Ltd,Nokia Research Centre (UK),University of Cambridge,SPECIFIC (Innovation and Knowledge Ctr),Dow Corning Ltd,Molecular Vision,Pragmatic Semiconductor Limited,Nokia Research Centre,OXFORD,Solvay,Dow Corning Ltd (UK),De La Rue International LtdFunder: UK Research and Innovation Project Code: EP/K03099X/1Funder Contribution: 5,627,160 GBPLarge-Area Electronics is a branch of electronics in which functionality is distributed over large-areas, much bigger than the dimensions of a typical circuit board. Recently, it has become possible to manufacture electronic devices and circuits using a solution-based approach in which a "palette" of functional "inks" is printed on flexible webs to create the multi-layered patterns required to build up devices. This approach is very different from the fabrication and assembly of conventional silicon-based electronics and offers the benefits of lower-cost manufacturing plants that can operate with reduced waste and power consumption, producing electronic systems in high volume with new form factors and features. Examples of "printed devices" include new kinds of photovoltaics, lighting, displays, sensing systems and intelligent objects. We use the term "large-area electronics" (LAE) rather than "printable electronics" because many electronic systems require both conventional and printed electronics, benefitting from the high performance of the conventional and the ability of the printable to create functionality over large-areas cost-effectively. Great progress has been made over the last 20 years in producing new printable functional materials with suitable performance and stability in operation but despite this promise, the emerging industry has been slow to take-off, due in part to (i) manufacturing scale-up being significantly more challenging than expected and (ii) the current inability to produce complete multifunctional electronic systems as required in several early markets, such as brand enhancement and intelligent packaging. Our proposed Centre for Innovative Manufacturing in Large-Area Electronics will tackle these challenges to support the emergence of a vibrant UK manufacturing industry in the sector. Our vision has four key elements: - to address the technical challenges of low-cost manufacturing of multi-functional LAE systems - to develop a long-term research programme in advanced manufacturing processes aimed at ongoing reduction in manufacturing cost and improvement in system performance. - to support the scale-up of technologies and processes developed in and with the Centre by UK manufacturing industry - to promote the adoption of LAE technologies by the wider UK electronics manufacturing industry Our Centre for Innovative Manufacturing brings together 4 UK academic Centres of Excellence in LAE at the University of Cambridge (Cambridge Integrated Knowledge Centre, CIKC), Imperial College London (Centre for Plastic Electronics, CPE), Swansea University (Welsh Centre for Printing and Coating, WCPC) and the University of Manchester (Organic Materials Innovation Centre, OMIC) to create a truly representative national centre with world-class expertise in design, development, fabrication and characterisation of a wide range of devices, materials and processes.
more_vert assignment_turned_in Project2021 - 2024Partners:Swansea University, brains4design, Newcastle University, G Lyte, brains4design +4 partnersSwansea University,brains4design,Newcastle University,G Lyte,brains4design,Newcastle University,SPECIFIC Innovation and Knowledge Ctr,G Lyte,SPECIFIC (Innovation and Knowledge Ctr)Funder: UK Research and Innovation Project Code: EP/V035819/1Funder Contribution: 330,992 GBPIntelligent wireless devices are rapidly evolving into indispensable assistants in numerous facets of our world. Merged with machine learning, wireless sensor networks are poised to advance the interchange of information in smart homes, offices, cities and factories. By 2030, an estimated 30 billion IoT (Internet of Things) devices are expected to be installed, the vast majority of which are to be placed indoors or in diffuse light conditions. IoT devices and wireless sensor nodes (WSN) will need to harvest energy from the environment for long-term deployment and operation. Indoor photovoltaic cells have the potential to provide the required energy. The power needed to operate these devices continues to decrease, while conversion efficiencies and hence the power output of indoor photovoltaic (IPV) cells is rapidly increasing. When located indoors with no access to solar irradiance, IPV cells harvest the energy emitted by artificial light sources, with the illumination intensity typically several orders of magnitude less than sunlight. Dye-sensitized IPV cells have shown considerable progress in terms of light to electricity conversion efficiency of late, with values over 30% measured under 200-1,000~lux light intensity. The collection of ambient light offers vast universally available energy, which can be used to design near-perpetual smart IoT devices. I have already developed the most efficient ambient light photovoltaic technology allowing one to implement artificial intelligence and image classification on self-powered IoT devices. In this proposal, I introduce a new design and energy paradigm to IoT devices, to maximize their ability to sense, communicate, and predict, powered by a dual-function device, an Energy-Storable Dye-sensitized Solar cell (ES-DSC). This device is a combination of energy harvester (Indoor Photovoltaic) and energy storage (a chemical supercapacitor). The chemical supercapacitor, a device that stores electrical energy in molecules, is based on organic redox materials, which are not only very efficient, but also sustainable and non-toxic. The intermittent character of the energy generation in IPVs will be bridged with the use of chemical supercapacitors to enable the overall IoT device to intermittently bridge periods of darkness for continuous operation. The proposed research focuses on innovating and implementing charge storing electrodes. I will focus on polyviologens, which have the ideal properties for IPV cells, are sustainable for electrical storage, and have not yet been applied in these emerging technologies. Funding from EPSRC will enable me to translate the favourable properties of polyviologens, firstly, by exploiting the high volumetric capacity of chemical supercapacitors to improve the performance, durability, and functionality of photovoltaic devices. Secondly, I will manipulate the backbone of the polymers to maximise the amount of charge that can be stored within the materials. Consequently, I will be able to fulfil my ambition of developing a new system that uses organic molecules, polyviologens, to integrate energy storage capabilities into solar cells to produce a single device capable of continuously powering electronic equipment during the day and at night. Success in this project will enable high efficiency light harvesting devices to be assembled at low-cost using roll-to-roll assembly, which would have enormous potential for societal and economic impact, including national and local jobs, supply chains, skills, and in reducing carbon emissions and fuel poverty.
more_vert assignment_turned_in Project2019 - 2026Partners:British Constructional Steelwork Assoc, Swansea University, ADS Group Limited, High Value Manufacturing (HVM) Catapult, British Steel Ltd +37 partnersBritish Constructional Steelwork Assoc,Swansea University,ADS Group Limited,High Value Manufacturing (HVM) Catapult,British Steel Ltd,British Constructional Steelwork Assoc,Tata Group UK,Primetals Technologies,Kubal Wraith,WELSH GOVERNMENT,Sheffield Forgemasters Engineering Ltd,SPECIFIC Innovation and Knowledge Ctr,Celsa Steel UK,Henry Royce Institute,Knowledge Transfer Network Ltd,Kubal Wraith,Sheffield Forgemasters Engineering Ltd,Subcoal International BV,SPECIFIC (Innovation and Knowledge Ctr),Welsh Government,UK Steel,UK Steel,Celsa Steel UK,Swansea University,The Manufacturing Technology Centre Ltd,ADS,Swansea University,HIGH VALUE MANUFACTURING CATAPULT,Subcoal International BV,Manufacturing Technology Centre,TISCO,Knowledge Transfer Network,Construction Products Association,Primetals Technologies Ltd (UK),Liberty Steel UK,MTC,British Steel Ltd,Henry Royce Institute,Liberty Speciality Steels,Construction Products Association,Tata Steel (United Kingdom),Welsh GovernmentFunder: UK Research and Innovation Project Code: EP/S018107/1Funder Contribution: 10,853,000 GBPSUSTAIN is an ambitious collaborative research project led by the National Steel Innovation Centre at Swansea University to transform the productivity, product diversity and environmental performance of the steel supply chain in the UK. Working with Warwick Manufacturing Group and the University of Sheffield, the SUSTAIN Manufacturing Hub will lead grand challenge research projects of carbon neutral steel and ironmaking and smart steel processing. Carbon neutral steel making will explore how we can transition the industry from using coal as its primary energy source to a mix of waste materials, renewable energy and hydrogen. Smart steel processing will examine how digital technology and sensors can be used to increase productivity and also explore how a transformation in the way in which steel is processed can add significant value and create new markets, in particular construction, whilst expanding the opportunities afforded by advanced steel products in the electrification of vehicular transport. The UK steel businesses cover different market sectors and are all engaged in this project committing >ÂŁ13M in supporting funds. Tata Steel lead work on strip steel products used in automotive (inc electrical steels for generators and motors construction) and packaging applications. British Steel produce long products for key sectors such as rail transport and construction. Liberty Specialty produce unique steels for sectors such as aerospace and nuclear power, Sheffield Forgemasters manufacture products for power generation, defence and civil nuclear industries, and Celsa make section steels and reinforcement primarily for construction. This represents a key element of advanced materials that underpin a large proportion of the UK manufacturing sector. The increasing diversity and lower carbon intensity of UK made steel products together with greater productivity and efficiency will thus benefit the whole of UK manufacturing and create opportunities for manufacturing to make inroads into traditional areas for example by driving offsite manufactured construction alternatives to traditional low skill labour intensive routes. Steel is the world's most used and recyclable advanced material and this project aims to transform the way it is made. This includes approaches both to use and re-use it and harness opportunities to turn any waste product into a value added element for another industry. To illustrate, a steel plant produces enough waste heat to power around 300,000 homes. New materials can trap this heat allowing it to be transported to homes and offices and be used when required without the need for pipes. This then makes the manufacturing site an embedded component of the community and is clearly a model applicable to any other high energy manufacturing operation in other sectors. We will at each stage explore how our discoveries in transforming steel can be mapped onto other key foundation materials sectors such as glass, petrochemicals and cement. Implementation of the research findings will be facilitated via SUSTAIN's network of innovation spokes ensuring that high quality research translates to highly profitable and competitive processes.
more_vert assignment_turned_in Project2016 - 2019Partners:[no title available], National instruments (Global), Fujitsu, SFI, Sofintsys +23 partners[no title available],National instruments (Global),Fujitsu,SFI,Sofintsys,National Physical Laboratory NPL,National Grid plc,MET OFFICE,Department for Business, Energy and Industrial Strategy,National Grid PLC,Met Office,Deloitte UK,Deloitte LLP,Swansea University,SPECIFIC (Innovation and Knowledge Ctr),Met Office,University of Sheffield,DECC,Fujitsu,INL,Sofintsys,Department of Energy and Climate Change,NPL,University of Sheffield,National instruments,Fujitsu Laboratories of Europe Ltd,Idaho National Laboratory,SPECIFIC Innovation and Knowledge CtrFunder: UK Research and Innovation Project Code: EP/N010019/1Funder Contribution: 502,347 GBPOur society is increasingly reliant upon engineered systems of unprecedented and growing complexity. As our manufacturing and service industries, and the products that they deliver, continue to complexify and interact, and we continue to extend and integrate our physical and digital infrastructure, we are becoming increasingly vulnerable to the cascading and escalating effects of failure in highly complex and evolving systems of systems. Consequently, it is becoming increasingly critical that we are able to understand and manage the risk and uncertainty in Complex Engineering Systems (CES) to provide reliant and optimal design and control solutions. Research on natural complex systems is helping us to understand the implications of inter-dependencies within and between complex adaptive systems. However, unlike natural ecosystems, which may become more robust through diversifying, man-made complex systems tend to become more fragile as their complexity increases. If we are to deal with the challenge presented by complex engineered systems, we will need to exploit and synthesise our current understanding of natural and engineered systems, our current theories of complexity more generally. The ENgineering COmplexity REsilience Network Plus (hereafter called ENCORE) addresses the Grand Challenge area of Risk and Resilience in CES. Our vision is to identify, develop and disseminate new methods to improve the resilience and sustainable long-term performance of complex engineered systems, initially including Cities and National Infrastructure, ICT and Energy Infrastructure, Complex Products: Aerospace (both Jet Engines and Space Launch and Recovery Systems) and later to explore the inclusion of Nuclear Submarines, Power Stations and Battlefield Systems. We have chosen these particular CES domains as they strike a balance between the challenges and opportunities that the UK faces for which complexity science can have a significant impact for our citizens and businesses whilst spanning sufficiently diverse fields to present cross-domain learning opportunities. Our approach is to create shared learning from [1] the manner in which naturally complex systems cope with risk and uncertainty to deliver resilience (ecosystems, climate, finance, physiology, etc.) and how such strategies can be adapted for engineering systems; [2] how the tools and concepts of complexity science can contribute towards developing a greater understanding of risk, uncertainty and resilience, and [3] distilling world-class activity within individual CES domains to provide new insights for the design and management of other engineering systems. Examples of the potential for the application of this field and which will be considered for inclusion in the feasibility studies include: - Predicting equipment failures and their consequences in critical infrastructure systems; - Developing a management heuristic that plays the same role as a "risk register", but addresses systemic resilience; - Optimising the deployment of instrumentation required to manage cities and other CES effectively; - Increasing the resilience of interdependent digital systems; - Advancing models of cascading failure on networks such that they take account of node heterogeneity and in particular the different failure/recovery modes of different types of node. - Improving the number of contexts in which CES can be deployed with replicable performance; - Decreasing the likelihood of human behavioural errors in operating CES. - Identifying the critical elements that constrain/define system performance most strongly; - Extending system lifetimes and functionality; - Mapping the relationship between complex system complexity and fragility; - Characterising uncertainty and defining the inference process to transition from one phase to the other in the control of CES and in complex decision making processes.
more_vert assignment_turned_in Project2014 - 2023Partners:EADS UK Ltd, Monash University, CatScI Ltd, Sasol Technology Research Laboratory, Sharp Laboratories of Europe Ltd +54 partnersEADS UK Ltd,Monash University,CatScI Ltd,Sasol Technology Research Laboratory,Sharp Laboratories of Europe Ltd,Yonsei University,Yonsei University,Unilever UK Central Resources Ltd,Swansea University,National Non-Food Crops Centre NNFCC,Johnson Matthey Plc,Kerry Ingredients Europe UK Ltd,BioSyntha Technology Limited,WESSEX WATER,Ohio State University,Centre for Process Innovation CPI (UK),Monash University,RWTH,TMO Renewables Ltd,Biocleave Limited,BioSyntha Technology Limited,OSU,MCI,ISIS Facility,EADS Airbus (to be replaced),Institution of Chemical Engineers,University of Bath,Innovate UK,Modern Built Environment,UKRI,University of Bath,Institution of Chemical Engineers,National Non-Food Crops Centre NNFCC,GlaxoSmithKline,Johnson Matthey,SPECIFIC (Innovation and Knowledge Ctr),LanzaTech NZ Ltd,Green Biologics (United Kingdom),UNILEVER U.K. CENTRAL RESOURCES LIMITED,TMO Renewables (United Kingdom),ISIS Facility,CatScI Ltd,LanzaTech NZ Ltd,Wessex Water Services Ltd,SPECIFIC Innovation and Knowledge Ctr,GlaxoSmithKline (Harlow),Johnson Matthey plc,Unilever (United Kingdom),CPI,MAST Carbon International Ltd,Airbus (United Kingdom),Technology Strategy Board (Innovate UK),GlaxoSmithKline,Sharp Laboratories of Europe (United Kingdom),CPI Ltd,Kerry Ingredients Europe UK Ltd,Science and Technology Facilities Council,Sasol Technology Research Laboratory,Yonsei UniversityFunder: UK Research and Innovation Project Code: EP/L016354/1Funder Contribution: 4,723,140 GBPSustainability is defined as "the ability to meet the needs of the present without compromising the ability of future generations to meet their own needs". Achieving sustainable development is the key global challenge of the 21st Century. It can only be met with the adoption of a range of new sustainable technologies. Sustainable chemical technologies are those involving chemistry as the central science. They span a wide range of areas, many of which make major impacts on society. Key sustainable chemical technologies include: use of renewable resources and biotechnology (e.g., making fuels, chemicals and products from biomass rather than petrochemicals); clean energy conversion and storage (e.g., solar energy, the hydrogen economy and advanced battery technologies); sustainable use of water (e.g., membrane technologies for water purification and upcycling of nutrients in waste water); developing sustainable processes and manufacturing (e.g., making production of chemicals, pharmaceuticals and plastics more energy-efficient and less wasteful through developing sustainable supply chains as well as through technological advances); and developing advanced healthcare technologies (e.g., developing new drugs, medical treatments and devices). To address these needs, we propose a Centre for Doctoral Training (CDT) in Sustainable Chemical Technologies. The ÂŁ5.08m requested from the EPSRC will be supplemented by ÂŁ2.0m from the University and a ÂŁ4.13m industrial contribution. The CDT will place fundamental concepts of sustainability at the core of a broad spectrum of research and training at the interfaces of chemistry, chemical engineering, biotechnology and manufacturing. This will respond to a national and global need for highly skilled and talented scientists and engineers in the area as well as training tomorrow's leaders as advocates for sustainable innovation. All students will receive foundation training to supplement their undergraduate knowledge, in addition to training in Sustainable Chemical Technologies. Broader training and practice in public engagement and creativity will encourage responsible innovation and attention to ethical, societal, and business aspects of research. They will all conduct high quality and challenging research directed by supervisory teams comprising joint supervisors from at least two of the disciplines of chemistry, chemical engineering, biotechnology and management as well as an industrial and/or international advisor. The broad research themes encompass the areas of: Renewable Resources and Biotechnology, Energy and Water, Processes and Manufacturing and Healthcare Technologies. Participation from key industry partners will address stakeholder needs, and partner institutions in the USA, Germany, Australia, and South Korea will provide world-leading international input, along with exciting opportunities for student placements and internships. The CDT will utilize dedicated physical and virtual space for the students as well as a supervisory base of more than fifty academics. Building on the success of the current Doctoral Training Centre and evolving to keep pace with the growing importance of biotechnology and manufacturing to UK industry, the centre will provide a dynamic and truly multidisciplinary environment for innovative PhD research and training.
more_vert
chevron_left - 1
- 2
chevron_right