Powered by OpenAIRE graph
Found an issue? Give us feedback

Selden Research Ltd

Selden Research Ltd

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/V031589/1
    Funder Contribution: 166,205 GBP

    Cardiff University and Selden Research have a patented novel catalytic method of making long lived reactive oxygen species effective for pathogen kill and surface disinfection. https://patentimages.storage.googleapis.com/12/c4/b7/8f1ef5827dc436/GB2572364A.pdf The method involves passing an environmentally benign solution containing dilute hydrogen peroxide (H2O2) using a spray bottle through a catalyst (a copper salt on alumina matrix) incorporated in the nozzle. We have tested this with a range of microorganisms including Staphylococcus aureus and Candida albicans yeast and have achieved 99.999% reduction in minutes. To date we have not examined virucidal activity but given the effect of our method on other microorganisms we anticipate it will be effective against enveloped viruses. Our work until now focussed on developing the method for the food preparation and agricultural industries and the key point is that no toxic residues remain on the surfaces that are treated, while also offering exceptional kill efficacy and compatibility with the surfaces treated. The research programme will initially test the virucidal activity of our existing formulation on viruses including coronavirus standard test strain as a surrogate for SARS-CoV-2 (COVID-19). We will then aim to modify and simplify the formulation to determine if we can replace hydrogen peroxide by air whilst maintaining the virucidal activity. We will also develop the use of aerosols so that the new method can be used to treat large spaces which could be applied in the disinfection of PPE for reuse or the environmentally non-toxic disinfection of transportation such as the internal spaces of ambulances, buses, trains and planes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I028137/1
    Funder Contribution: 156,810 GBP

    The aim is to exploit a recent discovery concerning the production of a new high activity catalyst for use in the production of formaldehyde from the oxidation of methanol using a novel nanorod catalysts. These new catalysts have been protected by a patent filing. The key feature of these catalysts is that they give higher yields that the current commercial catalysts. Funding is requested to complete patent exemplification and to ensure commercial exploitation can be achieved.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I006060/1
    Funder Contribution: 119,897 GBP

    The aim is to exploit a recent discovery concerning the production of a new high activity catalyst for use in the production of hydrogen peroxide from the direct reaction between hydrogen and oxygen using novel gold palladium heteropolyacid catalysts. These new catalysts have been protected by a patent filing. The key feature of these catalysts is that they can be used in water as solvent at ambient temperature whereas all previous catalysts require low temperatures and organic solvents. Initial results show the new catalyst is over fifteen times as active as the current equivalent commercial catalyst. Funding is requested to complete patent exemplification and to ensure commercial exploitation can be achieved.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z531285/1
    Funder Contribution: 1,276,090 GBP

    The goal of this partnership is to create new catalysts for chemical reactions that are sustainable and help produce important chemicals and intermediates. Catalysts are essential substances that make chemical reactions happen more efficiently, and they are fundamental to many of the key processes that support our modern society. Without effective catalysts, many of the products and processes that we rely on would not be possible. At present, the chemical industry primarily uses fossil carbon sources like natural gas, oil, and coal. However, this approach is not sustainable in the long term, and it contributes to climate change and other environmental problems. As a result, researchers are looking for new ways to make chemicals that rely on green and sustainable carbon sources. Acetylene is one such molecule that has the potential to be an essential intermediate for a sustainable chemical industry. Acetylene chemistry was well developed over a century ago, but it was displaced as a central chemical intermediate by readily available ethene derived from oil. As a result, acetylene chemistry is currently an underexplored field. However, it is possible to produce acetylene from methane, which from biogas is a renewable source of carbon. Therefore, acetylene could become a crucial central intermediate for a new green chemical industry. We aim to design and understand catalysts based on Au, Pt, and AuPt that will act as a new class of catalysts to produce key chemicals and intermediates from acetylene. The partnership will bring together world-leading and complementary catalysis expertise, with the Cardiff Catalysis Institute (CCI collaborating with the UK Catalysis Hub (Harwell), the Max Planck Institute fur Kohlenforschung (KOFO, Mulheim), the Instituto de Tecnologia Quimica (ITQ), and the Fritz-Haber-Institute of the Max Planck Society (FHI, Berlin). A key benefit of this partnership is the additionality that it provides. By pooling expertise and resources, researchers can tackle grand challenge problems more effectively. The collaborative project brings together centres with unique and crucial expertise, such as the high-pressure facilities for acetylene catalysis at MPI KOFO, the fundamental surface science and advanced characterization techniques available at Harwell and FHI, the advanced computational methodologies of the FHI and the synthetic expertise concerning nanoparticles of ITQ. This partnership will enable UK researchers to access this expertise and cutting-edge facilities to tackle the complex challenge of making and characterizing new catalysts. The research will focus on gaining a fundamental understanding of what controls the activity of these catalysts in specific reactions, such as acetylene hydrochlorination and acetylene hydrogenation. Supported Au and Pt catalysts display a range of morphologies and often have individual atoms/cations, clusters, and nanoparticles. In some reactions, it is the well-dispersed Au+ cations that are active, while in others, nanoparticles are active. The research will seek to gain a deeper understanding of what controls the activity in these reactions and use this knowledge to design new and improved catalysts. To achieve these goals, we will use in situ/operando techniques and complementary capabilities available through the partnership to study these new catalysts. The team of experts assembled has worked together previously in various combinations, which will facilitate effective collaboration and communication. The ultimate goal of this partnership is to create new catalysts that will enable the sustainable production of important chemicals and intermediates, contributing to the development of a more sustainable and environmentally friendly chemical industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S030468/1
    Funder Contribution: 1,530,290 GBP

    The Cardiff Catalysis Institute, UK Catalysis Hub, Netherlands Centre for Multiscale Catalytic Energy Conversion (MCEC, Utrecht), and the Fritz-Haber-Institute of the Max Planck Society (FHI, Berlin) will use a novel theory-led approach to the design of new trimetallic nanoparticle catalysts. Supported metal nanoparticles have unique and fascinating physical and chemical properties that lead to wide ranging applications. A nanoparticle, by definition, has a diameter in the range one to one hundred nanometres. For such small structures, particularly towards the lower end of the size range, every atom can count as the properties of the nanoparticle can be changed upon the addition or removal of just a few atoms. Thus, properties of metal nanoparticles can be tuned by changing their size (number of atoms), morphology (shape) and composition (atom types and stoichiometry, i.e., including elemental metals, pure compounds, solid solutions, and metal alloys) as well as the choice of the support used as a carrier for the nanoparticle. The constituent atoms of a nanoparticle that are either part of, or are near the surface, can be exposed to light, electrons and X-rays for characterisation, and this is the region where reactions occur. Our lead application will be catalysis, which is a strategic worldwide industry of huge importance to the UK and global economy. Many catalysts comprise supported metal nanoparticles and this is now a rapidly growing field of catalysis. Metallic NPs already have widespread uses e.g., in improving hydrogen fuel cells and biomass reactors for energy generation, and in reducing harmful exhaust pollutants from automobile engines. Many traditional catalysts contain significant amounts of expensive precious metals, the use of which can be dramatically reduced by designing new multi-element nanocatalysts that can be tuned to improve catalytic activity, selectivity, and lifetime, and to reduce process and materials costs. A major global challenge in the field of nanocatalysis is to find a route to design and fabricate nanocatalysts in a rational, reproducible and robust way, thus making them more amenable for commercial applications. Currently, most supported metal nanocatalysts comprise one or at most two metals as alloys, but this project seeks to explore more complex structures using trimetallics as we now have proof-of-concept studies which show that the introduction of just a small amount of a third metal can markedly enhance catalytic performance. We aim to use theory to predict the structures and reactivities of multi-metallic NPs and to validate these numerical simulations by their synthesis and experimental characterisation (e.g., using electron microscopy and X-ray spectroscopy), particularly using in-situ methodologies and catalytic testing on a reaction of immense current importance; namely the hydrogenation of carbon dioxide to produce liquid transportation fuels. The programme is set out so that the experimental validation will provide feedback into the theoretical studies leading to the design of greatly improved catalysts. The use of theory to drive catalyst design is a novel feature of this proposal and we consider that theoretical methods are now sufficiently well developed and tested to be able to ensure theory-led catalyst design can be achieved. To achieve these ambitious aims, we have assembled a team of international experts to tackle this key area who have a track record of successful collaboration. The research centres in this proposal have complementary expertise that will allow for the study of a new class of complex heterogeneous catalysts, namely trimetallic alloys. The award of this Centre-to-Centre grant will place the UK at the forefront of international catalytic research.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.