Powered by OpenAIRE graph
Found an issue? Give us feedback

Siemens Energy

SIEMENS ENERGY GLOBAL GMBH & CO. KG
Country: Germany
18 Projects, page 1 of 4
  • Funder: European Commission Project Code: 101137915
    Overall Budget: 3,000,050 EURFunder Contribution: 3,000,000 EUR

    The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolysis (AWE) has potential for cost-effectiveness and scalability, it needs further optimization in activity, stability, and gas crossover to increase efficiency and system lifetime. This project will develop a new class of AWE combining proven benefits of classic systems with cutting-edge innovations in materials science, catalyst design, and process engineering. Driven by an industrial-feasibility vision, a system that is both technically advanced and economically viable for large-scale commercial deployment is pursued. The proposed innovations include highly efficient and earth-abundant two-dimensional layered double hydroxides (LDH) obtained through a starightforward synthetic route, offering a sustainable and cost-effective alternative to noble metal-based catalysts. An innovative technology for up-scaling the production of LDH layers by direct growth of catalysts in porous transport electrodes will be implemented and explored on commercial separators. The interplay between the substrate, catalyst, and separator will be thoroughly optimized through the development of triple-phase boundary electrodes (catalyst-support-ionomer) structures with improved thermo-mechanical stability. A reliable method based on Raman spectroscopy, will be developed for the precise determination of electrode stability, offering an appropriate quality control of great interest both in research and industry. The optimal design will be assembled and tested, first in single cells of 5 cm², then in 25 cm², and finally scaled to a 6-cell stack of 300 cm², to demonstrate a next generation technology with improved performance, stability and durability, aimed to accelerate the commercial uptake of water electrolysis and turn green H2 into an economically viable solution.

    more_vert
  • Funder: European Commission Project Code: 101138002
    Overall Budget: 7,073,280 EURFunder Contribution: 4,442,550 EUR

    HyCoFlex is aiming at the development of a retrofitable decarbonisation package for cogeneration of power and industrial heat with 100%-fired gas turbines. The solution will be integrated and fully demonstrated at an industrial site in Saillat-sur-Vienne in France. HyCoFlex will leverage on and further advance the infrastructure of a power-to-hydrogen-to-power industrial scale plant which was developed and demonstrated within the HYFLEXPOWER project. The project will develop operational flexibility capabilities and protocols to satisfy the typical operating profiles experienced by industrial cogeneration plants. By doing so, HyCoFlex will elaborate credible pathways for upscaling and replicating the retrofit package, ultimately accelerating the achievement of industrial and energy sector decarbonisation. In order to meet the global objective, within the HyCoFlex project, the HYFLEXPOWER plant concept and infrastructure will be implemented for 100% H2-fuelled cogeneration. In the framework of the project a Siemens Energy SGT-400 gas turbine will be upgraded with an advanced dry low-emission (DLE) H2 combustion system to operate with different natural gas / H2 fuel mixtures. The retrofitted demonstrator plant will be validated for flexible operation under various natural gas/hydrogen mixtures and loads, while aiming at overcoming state-of-the-art efficiencies with decreased NOx emissions. Finally, HyCoFlex will explore pathways for upscaling and commercialization of decarbonised power generation from gas turbines within a circular-economy framework.

    more_vert
  • Funder: European Commission Project Code: 735503
    Overall Budget: 17,852,500 EURFunder Contribution: 11,997,800 EUR

    Under the coordination of VERBUND, VOESTALPINE, a steel manufacturer, and SIEMENS, a PEM electrolyser manufacturer, propose a 26 month demonstration of the 6MW electrolysis power plant installed at the VOESTALPINE LINZ plant (Austria). After pilot plant commissioning, the electrolyser is prequalified with the support of APG, the transmission operator of Austria, in order to provide grid-balancing services such as primary, secondary or tertiary reserves while utilising the commercial pools of VERBUND. The demonstration is split into five pilot tests and the quasi-commercial operation to show that the PEM electrolyser is able both to use timely power price opportunities (in order to provide affordable hydrogen for current uses of the steel making processes), and to attract extra revenues from grid services which improves the hydrogen price attractiveness from a two-carrier utility like VERBUND. Replicability of the experimental results at larger scales in EU28 for the steel industry (with inputs from TSOs in Italy, Spain and the Netherlands) is studied under the coordination of ECN. It involves a technical, economic and environmental assessment of the experimental results using the CertifHY tools. The roll out of each result is provided by ECN, together with policy and regulatory recommendations to accelerate the deployment in the steel and fertilizer industry, with low CO2 hydrogen streams provided also by electrolysing units using renewable electricity. The plausibility of this roadmap is reinforced at the on-start of the demonstration by the creation of an exploitation company involving the core industrial partners, which starts commercial operations of the Linz pilot plant right after the end of the demonstration. Dissemination targeting the European stakeholders of the electricity, steel and fertilizer value chain nourishes the preparation of the practical implementation of the results in the 10 years following the demonstration’s end.

    more_vert
  • Funder: European Commission Project Code: 101006701
    Overall Budget: 4,858,550 EURFunder Contribution: 4,858,550 EUR

    The collaborative project EcoFuel addresses the Topic “Development of next generation renewable fuel technologies from CO2 and renewable energy (Power and Energy to Renewable Fuels)” under the call Building a low-carbon, climate resilient future: Secure, clean and efficient energy. EcoFuel develops and demonstrates a novel thorough process chain that significantly improves the energy efficiency for production of synthetic fuel out of CO2 and water using renewable energy. The process chain comprises a) the supply of CO2 from the atmosphere via a novel direct air capture approach, b) direct electro-catalytic reduction of CO2 to C2/C3 alkenes at close to ambient temperatures, and c) thermo-catalytic liquefaction of alkenes, upgrading and fractionation into transport fuels. The direct electro-catalytic CO2 reduction to hydrocarbons offers greatly enhanced efficiency potentials compared to Power-to-X technologies downstream of water electrolysis and at the same time, reduces process pathway steps. Process performance will be validated by in-depth impact assessment. The EcoFuel approach will bring together chemists, physicists, engineers and dissemination and exploitation experts from 4 universities/research institutions, 2 SMEs and 3 industries, innovatively joining their key technologies to develop and exploit a novel complete process chain, based on the power of electrochemistry to deliver truly green (CO2 neutral) fuels with an unprecedented overall energy efficiency. Within 36 months project duration, the EcoFuel technology will undergo a thorough material and component R&D programme and together with its significant industry involvement this project will be set on unique path toward new technology developments up to TRL 4 that will have lasting impact on the European renewable energy system.

    more_vert
  • Funder: European Commission Project Code: 884229
    Overall Budget: 15,252,200 EURFunder Contribution: 10,475,100 EUR

    Clean, reliable and secure energy supply is a key requirement for the further development of the European economy. At the same time, the Paris Agreement and its aim to limit the global warming to well below 2°C call for a quick and significant reduction of CO2 emissions, including the energy sector. In the energy sector this can only be achieved by a significant increase of the share of renewable energy sources (RES). As the most abundant RES, wind and solar, are intermittent by nature, there is a need for energy storage technologies, to provide back-up power when wind and solar output are low and more generally for load levelling and grid stabilisation. Chemical storage appears to be the most promising long-term energy storage technology. Among chemical storage technologies, hydrogen is expected to dominate as it can be produced by electrolysis of water using excess energy from RES, easily compressed and stored, and finally re-electrified using gas turbines. The goal of HYFLEXPOWER is the first-ever demonstration (at TRL7) of a fully integrated power-to-H2-to-power industrial scale installation in a real-world power plant application. The project will update and enhance an existing power plant within an industrial facility in Saillat-sur-Vienne, France. It will include the integration of energy conversion (power-to-H2) in the demonstration plant using excess energy from RES and necessary storage capabilities. The Siemens SGT-400 gas turbine will be upgraded to operate with different natural gas / H2 fuel mixtures. A key objective is the operation at full load and production of 12 MW electrical energy with high-hydrogen fuel mixtures of at least 80% by volume H2 up to 100%. The tests will also demonstrate that EU emission limits for such installations can be not only met, but also reduced. Finally, the development of an economic assessment for this Power-to-H2-to-Power pilot plant demonstration will be conducted to show the economic benefits of this application.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.