Powered by OpenAIRE graph
Found an issue? Give us feedback

CMCL Innovations (United Kingdom)

CMCL Innovations (United Kingdom)

9 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R025983/1
    Funder Contribution: 1,011,130 GBP

    Inorganic nanomaterials are widely used in diverse applications such as oil refining, food, coatings, cosmetics, textile, transport, healthcare and electronics and communication, with a global market worth 20 billion EURO. A recent inventory has documented >1800 consumer products that contain nanomaterials and many more non-commodity products such as industrial catalysts and separation media. However, there are limitations in terms of the sustainability of and the attainable product quality from current manufacturing. Industry uses wet (chemical precipitation) and dry (flame or plasma) processes for manufacturing nanomaterials. Despite the advances in the latter, it has been shown that the wet processes are lot more efficient than the dry processes. Anastas and co-workers performed a sustainability analysis for wet processes, which revealed that nanomaterials manufacturing is significantly wasteful when compared to the production of bulk chemicals. This creates an enormous burden on the environment and results in unsustainable manufacturing. Further, some of the key properties of nanomaterials cannot be obtained with existing manufacturing methods. Lab-based methods exist for synthesising nanomaterials of desired properties, however, these methods are very wasteful and uneconomical to scale-up. Hence such high value materials remain at small scales and commercially inaccessible. A World Technology Evaluation Center report, commissioned by the USA's National Science Foundation, explicitly recommended that achieving green manufacturing by 2020 is the "holy grail" and that future research should focus on emulating natural designs to develop scalable processes for manufacturing nanomaterials [Ref. Roco et al., Nanotechnology Research Directions for Societal Needs in 2020, NSF and WTEC, 2010]. I have developed fully synthetic novel bioinspired approaches to nanomaterials, with rapid reactions (takes only 1-5 minutes) at room temperature in water, producing almost no waste, yet providing superior control of product properties. This method can reduce the energy usage of the reaction step by ~95% when compared with a traditional precipitation process and the materials would as cheap as the lowest grade commercial counterparts, yet provide significantly better quality and properties. However, the bulk of research on bioinspired synthesis has been performed at small scales. The bioinspired method cannot be scaled-up yet because there is a critical gap in our knowledge on its scale dependence. This fellowship aims to apply bioinspired routes to deliver sustainable ("green"), low cost and scalable technologies for manufacturing high value functional nanomaterials. I will develop scale-up rules by modelling and experimentally measuring mixing mechanisms. I will design process chemistry to produce bespoke nanomaterials and demonstrate pathways for larger-scale manufacturing. This fellowship has a great potential to take the UK to the world leading stage in sustainable manufacturing of bespoke nanomaterials.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S024220/1
    Funder Contribution: 6,483,130 GBP

    Efficient synthesis remains a bottleneck in the drug discovery process. Access to novel biologically active molecules to treat diseases continues to be a major bottleneck in the pharmaceutical industry, costing many lives and many £millions per year in healthcare investment and loss in productivity. In 2016, the Pharmaceutical Industry's estimated annual global spend on research and development (R&D) was over $157 billion. At a national level, the pharmaceutical sector accounted for almost half of the UK's 2016 £16.5bn R&D expenditure, with £700 million invested in pre-clinical small molecule synthesis, and 995 pharmaceutical related enterprises (big pharma, SMEs, biotech & CROs) employing around 23,000 personnel in UK R&D. The impact of this sector and its output on the nation's productivity is indisputable and worthy of investment in new approaches and technologies to fuel further innovation and development. With an increasing focus on precision medicine and genetic understanding of disease there will be to a dramatic increase in the number of potent and highly selective molecular targets; identifying genetically informed targets could double success rates in clinical development (Nat. Gen. 2015, 47, 856). However, despite tremendous advances in chemical research, we still cannot prepare all the molecules of potential interest for drug development due to cost constraints and tight commercial timelines. By way of example, Merck quote that 55% of the time, a benchmarked catalytic reaction fails to deliver the desired product; this statistic will be representative across pharma and will apply to many comparable processes. If more than half of the cornerstone reactions we attempt fail, then we face considerable challenges that will demand a radical and innovative a step change in synthesis. Such a paradigm shift in synthesis logic will need to be driven by a new generation of highly skilled academic and industry researchers who can combine innovative chemical synthesis and technological advances with fluency in the current revolution in data-driven science, machine learning methods and artificial intelligence. Synthetic chemists with such a set of skills do not exist anywhere in the world, yet the worldwide demand for individuals with the ability to work across these disciplines is increasing rapidly, and will be uniquely addressed by this proposed CDT. By training the next generation of researchers to tackle problems in synthetic chemistry using digital molecular technologies, we will create a unique, highly skilled research workforce that will address these challenges and place UK academic and industrial sectors at the frontier of molecule building science. The aspiration of next-generation chemical synthesis should be to prepare any molecule of interest without being limited by the synthetic methodologies and preparation technologies we have relied on to date. Synthetic chemists with the necessary set of such skills and exposure to the new technologies, required to innovate beyond the current limitations and deliver the paradigm shift needed to meet future biomedical challenges, are lacking in both academia and industry. To meet these challenges, the University of Cambridge proposes to establish a Centre of Doctoral Training in Automated Chemical Synthesis Enabled by Digital Molecular Technologies to recruit, train and develop the next generation of researchers to innovate and lead chemical synthesis of the future.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S017259/1
    Funder Contribution: 343,786 GBP

    World-wide, energy conversion is currently dominated by the combustion of fossil fuels. Electricity generation and transport are key energy consumers and contribute significantly to atmospheric CO2, NOx, and particulate emission. There is an increasing awareness in the public eye of the potential impact of particulates on health. This includes a higher risk of cancer, asthma and a potential contribution to neurodegenerative disorders (e.g., Alzheimer's disease). In the UK, particulate matter (PM) from combustion processes is a significant contributor to poor air quality in urban areas; it has been reported that more than 25,000 deaths per year could be attributed to long-term exposure to anthropogenic particulate air pollution. As reported by DEFRA, poor air quality is the largest environmental risk to public health in the UK, contributing to an estimated £2.7 billion per year in lost productivity. Air pollution also results in damage to the natural environment, contributing to the acidification of soil and watercourses. An obvious solution might be to move towards the replacement of vehicles with electric, however, this technology is limited by range, recharge times and the cost of the battery - for which there is currently not the sufficient global infrastructure to directly replace vehicles powered by internal combustion engine powered. Another complementary solution is to find alternative fuels that are tailored to reduce destructive emissions such as NOx and particulates. This has the advantage that it could be rapidly deployed due to the overlap with existing fuel station infrastructure. The main aim of the proposed research is to provide a fundamental understanding of the combustion performance and emissions characteristics of key biofuels. This is vital knowledge to aid the development of next-generation low carbon technologies. The key objectives are: (1) to provide high-quality experimental data from a study of spray flame behaviour and emissions using advanced optical diagnostic techniques such as laser-induced breakdown spectroscopy and laser-induced fluorescence, (2) to develop new combustion chemical kinetic models, based on COSILAB (Combustion Simulation Laboratory software), predicting soot and NOx emissions and (3) to establish collaborations with industrial and academic partners to investigate power generation and transport applications for next-generation biofuels. In the proposed research, the targeted biofuels are: (1) ethanol, (2) iso-pentanol, (3) dimethyl ether (DME) and (4) combined fuels - ethanol, iso-pentanol, DME and biomethane. These key fuels are potentially next-generation biofuels. The production paths of these fuels are either well established or achievable. Ethanol and DME have already shown evidence of reduced emissions from engine tests. The understanding of combustion chemistry is essential to enable the delivery of a low NOx and soot emission combustion system. How the local chemistry is influenced by various turbulent flow conditions will be examined in detail.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M001369/1
    Funder Contribution: 996,574 GBP

    The UK needs carbon capture and storage (CCS) as part of its energy mix to minimise the cost of decarbonising our economy. CCS will have to fit into an electricity market that is increasingly dominated by inflexible nuclear and uncontrollable wind. It will therefore be vital that the CCS plants we develop are sufficiently flexible to interact with this new system, and balance the rapid start and cycling abilities with the lowest possible capital and operating costs. Flexible CCS will be characterised by the ability to simultaneously interact with the complex electricity system of the future and also the downstream CO2 transport and storage system. Rather than burning fuel purely in response to electricity price, CCS operators will also have to factor in waste storage costs, which will suffer similar complexity due to constraints on CO2 transport and injection rates and gas composition. This project will identify the flexibility bottlenecks in the CCS chain and also promising options for the development of resilient CCS systems. These models will internally calculate CCS plant load factors and electricity wholesale prices, thereby enabling a rigorous, technologically- and temporally-explicit, whole systems analysis. Feedback from CO2 storage operations will exert an as-yet unknown impact on the feasible operating space of the decarbonised power plant. We will explicitly quantify the interactions between the above- and below-ground links in the CCS chain. Sample CCS chains developed will be assessed in more detail concerning their broader role in the UK energy system. The implications of technological improvements in critical technologies such as advanced sorbents, improved air separation technologies and the availability of waste heat will also be considered. On a larger scale, the inter-operation of sample UK-specific CCS networks with intermittent renewable energy generation will be examined from an internally consistent whole-systems perspective. The internalisation of exogenous boundary conditions (e.g., the role of renewable energy and CCS plant load factors) and the development of multi-source-to-sink CCS system models will enable the most accurate assessment to date of how CCS will fit into the UK energy system and would interact with other energy vectors. The linking of CCS and renewable energy generation system models will allow us to examine the opportunities and impacts associated with the co-deployment of renewable energy and CCS in the UK. This will feed into a wider policy analysis that will examine the dynamics of changing system infrastructure at intermediate time periods between now and 2050. Dissemination of research output will be continuous over the duration of the project. We will engage with the academic community via publication in the international peer reviewed scientific literature and presenting at selected conferences. Owing to the topical nature of this research, public engagement is a priority for us. We plan on creating and managing a project webpage will provide real time insight into project progress and intermediate conclusions and results. All research papers and presentations will be available from this site. Similarly, we will conduct a continuous horizon scanning activity as part of this project. Our website will be continuously updated with a view to providing an understanding of where our research fits in the broader UK and international research arena. This work will be carried out via the development and integration of detailed mathematical models of each link in the CCS chain. We have engaged with a leading UK-based software development company with whom we will work to make these models available to the academic and broader stakeholder community. Further, a version of the modelling tools suitable for use by the general public will also be prepared. It is expected that this tool will be analogous in form and functionality to the DECC 2050 Calculator.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.