Powered by OpenAIRE graph
Found an issue? Give us feedback

Vienne University of Technology

Country: Austria

Vienne University of Technology

19 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: EP/F012403/1
    Funder Contribution: 151,216 GBP

    The functional electroceramics market is multibillion pounds in value and growing year by year. Electroceramic components are vital to the operation of a wide variety of home electronics, mobile communications, computer, automotive and aerospace systems. The UK ceramics industry tends to focus on a number of specialist markets and there are new opportunities in sensors, communications, imaging and related systems as new materials are developed. To enable the UK ceramics community to benefit from the new and emerging techniques for the processing and characterisation of functional electroceramics a series of collaborative exchanges will be undertaken between the three UK universities (Manchester, Sheffield and Imperial College) and universities and industry in Europe (Austria, Germany, Russia, Czech Republic), the USA and Asia (Japan, Taiwan and Singapore). These exchanges will enable the UK researchers (particularly those at an early stage of their careers) to learn new experimental and theoretical techniques. This knowledge and expertise will be utilised in the first instance in the new bilateral collaborative projects, and transferred to the UK user communities (UK universities and UK industry). A number of seminars and a two day Workshop will be held to help the dissemination of knowledge.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J002348/1
    Funder Contribution: 712,165 GBP

    In atoms, molecules or biological systems, all structural changes will modify the properties of the entity (form, colour, capacity to react with other entities etc ...). These changes are due to electronic and nuclear dynamics known as charge migrations (rearrangement of electrons and/or protons within the entity). However charge migrations are very fast and can occurs within 1/1000 000 000 000 000 second meaning from few attosecond (1e-18 sec) to few femtosecond (1e-15 sec). As an example in the Rutherford model of the hydrogen atom, known as the "planetary" model, an electron is moving around a proton (first orbital). The duration the electron takes to complete period around the proton is 150 asec. What is particularly exciting is to be able to make "a movie" of this ultra-fast dynamic that no existing device is capable to follow. My interests are actually not only to observe the first instants of these structural changes but also to control them to go deeper in the understanding of how chemical reactions or biological phenomena take place. If such attosecond information is achieved it will be possible to approach very high-speed information transfer and why not studying how information can be artificially encoded (molecular electronics) or present (traces of cancers) in biological sample, a kind of bio computing?This research will give birth to a new type of Physics that will bridge the gap between many sciences. The technical challenges under this research area are leading international efforts in laser development that will have a huge impact on technological applications also in industry (electronic, communication), medicine technologies (Magnetic Resonance Imaging, proton therapy, pharmacology).Therefore I developed a research based on tools to observe and control the intra- atomic and intra-molecular electrons and nuclei motions. To capture this dynamics at the origin of any chemical or biological reactions, one has to capture snapshots of the system evolving, exactly as a camera will do. Unfortunately there is no such detector, but what is possible is to find a process observable, that can be affected by these changes and so that will carry the fingerprint of these changes. The ideal candidate for this is light, because emission of photons is highly sensitive to any changes, it is a fast process and it can be observable by looking at spectra (frequency equivalent to its colour). The process I choose is high-order harmonic generation (HHG) that occurs within 10's attosec to few fsec (appropriate time window). It occurs while an intense and short laser pulse interacts with an atom or a molecule. During this interaction, an electron is ionised (extract from the core), and follow a certain trajectory before coming back to the core where it can be recaptured, exactly as a returning boomerang. The excess kinetic energy the electron has acquired during its travel will be spent by the system (final atom or molecule) emitting a new photon which frequency (colour) will be an odd harmonic of the fundamental photon (the laser photon). These harmonic photons can be measured accurately so if a change in the core occurs during the electron travel, the characteristic of the photons emitted will be modified. I have been working in the study of high order harmonic and in particular in the understanding of electron trajectories during the process. I demonstrated experimentally that the ionised electron can not only follow one trajectory but many, giving rise to my technique of investigation called Quantum-Path Interferences first demonstrated in atoms. I will use this technique under different conditions to extract the information on charge migration in molecules within the attosecond timescale.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W020254/1
    Funder Contribution: 346,227 GBP

    Mid-infrared (mid-IR) absorption spectroscopy is a well-known and versatile analytical technique for uniquely identifying and measuring the concentrations of gases, chemicals, and biological molecules by measuring which wavelengths of mid-IR light an analyte absorbs. Existing mid-IR absorption sensors are however either bulky and expensive (e.g. benchtop spectrometers), or have poor sensitivity and specificity (e.g. LED based sensors). Miniaturising such sensors could be transformative for diverse medical, industrial, and environmental sensing scenarios. High performance, low cost, and small spectroscopic sensors could be created using mid-IR optical circuits on silicon chips. These chips would ideally combine all of the required optical functions of the sensor (i.e. light source, waveguides for routing light, interaction between the light and the analyte, and light detection), and could be fabricated at low cost in high volumes, thanks to existing silicon manufacturing infrastructure that has been developed for electronics and for near-infrared optical communications. The last few years have seen rapid development of many of the components that are needed to create these sensor systems: silicon photonic waveguides that can transmit light with low loss at almost any mid-IR wavelength have been developed, while lasers emitting high powers in the mid-IR are now readily available and have been successfully integrated with silicon waveguides. However, there remains a crippling lack of practical photodetector technologies; those that have already been integrated wilth optical circuits on silicon chips are either expensive to manufacture, are impractical because they have to be cooled to cryogenic temperatures, or do not work at all required wavelengths. This project will develop new waveguide integrated thermal photodetectors, which work by converting the incoming light into a temperature change that can be measured with an electronic circuit. They will be able to operate at room temperature at any mid-IR wavelength, and will be manufactured using low cost techniques. This project will also demonstrate that sensors employing these photodetectors can reach the sensitivities required for clinical and industrial uses, by using them to measure low concentrations of artificial sweeteners in soft drinks - an industrially important example application. These detectors will potentially transform mid-infrared sensor systems from an academic curiosity into a commercially viable technology.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H049010/1
    Funder Contribution: 477,744 GBP

    The UK and the European Union have legally binding targets for reducing carbon dioxide emissions and for the increasing renewable energy generation. As about 25% to 33% of the UK's annual energy usage is expended on space heating, the provision of renewable heat energy is an area of critical importance if emissions and energy targets are to be achieved. Increased use of ground energy systems within foundations and other underground structures would be beneficial in both these respects, and will be eligible for financial support through the forthcoming government Renewable Heat Incentive. However, despite a recent increase in the use of ground energy systems, there remain key areas of uncertainty about their performance. This is especially important in the long term, where multiple installations will interact with each other and where unbalanced heating or cooling loads will lead to changes in the thermodynamic regime in the ground. This project aims to address some of the uncertainties surrounding ground energy systems installed in foundations by comprehensively instrumenting and monitoring two sites in contrasting ground conditions. This will allow the real response of the ground to known heating and cooling loads to be measured, and comparisons made with predictions based on analytical and numerical models. The use of contrasting geological regimes will allow investigation of the impact of groundwater on the performance of systems, something rarely considered and not well understood. The field monitoring will be accompanied by a programme of in situ and laboratory testing to assess differences in thermal behaviour at different scales and temperatures relevant to ground energy systems. The testing programme will address questions relating to degrees of uncertainty in determining key thermal properties and how this may compare with other uncertainties in the system design, such as heating/cooling loads. Numerical modelling, including back analysis of the in situ thermal response testing and operation of the ground energy systems, will allow assessment of the sensitivity of the systems to different input parameters. The modelling will also allow evaluation of the numerical and analytical techniques currently used for the design of ground energy systems and assessment of the importance of key factors (geological variation, groundwater, surface boundary conditions, geothermal gradient) not currently accounted for in existing methods. Taken together, the various strands to the project are expected to provide an important dataset which will add substantially to the understanding of the performance of ground energy systems. By addressing uncertainties surrounding design input parameters, geological conditions and design approaches, the project will also provide relevant lessons for direct application to the design and construction of ground energy systems installed in foundations, which it is expected will ultimately form part of improved guidance for industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023291/1
    Funder Contribution: 6,384,740 GBP

    The Centre for Doctoral Training MAC-MIGS will provide advanced training in the formulation, analysis, and implementation of state-of-the-art mathematical and computational models. The vision for the training offered is that effective modern modelling must integrate data with laws framed in explicit, rigorous mathematical terms. The CDT will offer 76 PhD students an intensive 4-year training and research programme that equips them with the skills needed to tackle the challenges of data-intensive modelling. The new generation of successful modelling experts will be able to develop and analyse mathematical models, translate them into efficient computer codes that make best use of available data, interpret the results, and communicate throughout the process with users in industry, commerce and government. Mathematical and computational models are at the heart of 21st-century technology: they underpin science, medicine and, increasingly, social sciences, and impact many sectors of the economy including high-value manufacturing, healthcare, energy, physical infrastructure and national planning. When combined with the enormous computing power and volume of data now available, these models provide unmatched predictive tools which capture systematically the experimental and observational evidence available. Because they are based on sound deductive principles, they are also the only effective tool in many problems where data is either sparse or, as is often the case, acquired in conditions that differ from the relevant real-world scenarios. Developing and exploiting these models requires a broad range of skills - from abstract mathematics to computing and data science - combined with expertise in application areas. MAC-MIGS will equip its students with these skills through a broad programme that cuts across disciplinary boundaries to include mathematical analysis - pure, applied, numerical and stochastic - data-science and statistics techniques and the domain-specific advanced knowledge necessary for cutting-edge applications. MAC-MIGS students will join the broader Maxwell Institute Graduate School in its brand-new base located in central Edinburgh. They will benefit from (i) dedicated academic training in subjects that include mathematical analysis, computational mathematics, multi-scale modelling, model reduction, Bayesian inference, uncertainty quantification, inverse problems and data assimilation, and machine learning; (ii) extensive experience of collaborative and interdisciplinary work through projects, modelling camps, industrial sandpits and internships; (iii) outstanding early-career training, with a strong focus on entrepreneurship; and (iv) a dynamic and forward-looking community of mathematicians and scientists, sharing strong values of collaboration, respect, and social and scientific responsibility. The students will integrate a vibrant research environment, closely interacting with some 80 MAC-MIGS academics comprised of mathematicians from the universities of Edinburgh and Heriot-Watt as well as computer scientists, engineers, physicists and chemists providing their own disciplinary expertise. Students will benefit from MAC-MIGS's diverse network of more than 30 industrial and agency partners spanning a broad spectrum of application areas: energy, engineering design, finance, computer technology, healthcare and the environment. These partners will provide internships, development programmes and research projects, and help maximise the impact of our students' work. Our network of academic partners representing ten leading institutions in the US and Europe, will further provide opportunities for collaborations and research visits.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.