Powered by OpenAIRE graph
Found an issue? Give us feedback

Synthomer Ltd

Country: United Kingdom
12 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/M000842/1
    Funder Contribution: 334,935 GBP

    Polymers are ubiquitous materials that have touched every aspect of our lives. These inexpensive, varied macromolecules are particularly impressive due to the diversity of physical properties and applications accessible. Innovations ranging from commodity materials to smart coatings to nano medicine are built from the foundation of polymer chemistry. This is especially important in the UK, where the polymer industry contributes >2% of UK GDP. The tools that polymer scientists and engineers use are also growing. In particular, control over both polymer macrostructure and microstructure has seen an explosion in research activity, particularly in the field of Controlled Radical Polymerisation (CRP) which offers scientists the chance to reproducibly control the synthesis of individual macromolecules. This is achieved through several strategies, but arguably none are as robust as atom transfer radical polymerisation (ATRP). This process has transformed the polymer industry and accessed polymer morphologies and structures with tunable properties, self-assembly, applications and structures. Challenges remain, however, in examining systems beyond copper catalysts. In particular, non-toxic initiators that de-colour readily and are easily tuned are an important target, especially in producing plastics and coatings for packaging and biomedical applications. Building from our expertise in iron-based systems for CRP, we propose to investigate Fe and Ti based catalysts. Our strategy is unique in that it is inspired by an understanding of coordination chemistry. Through this research programme we will develop new catalysts, with innovation in ligand design and catalyst development; develop new protocols to quickly screen and assess catalyst performance; develop a novel strategy to introduce secondary tuning into the coordination sphere to shape complex reactivity; significantly expand the monomer scope of Fe-mediated CRP; develop new applications at the interface between ethylene/functional monomer polymerisations and vinyl acetate branching. Through these activities we will establish our iron and titanium systems as the preferred technologies for CRP processes, developing a system that is both environmentally and financially sustainable. Expanding from basic commodity polymers to specialty applications and polymers will diversify the UK product base whilst increasing sales. We will strengthen the UK expertise in CRP to new green ATRP catalysts, promoting innovation whilst minimising environmental impact.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P026095/1
    Funder Contribution: 497,593 GBP

    The polymer industry is intimately involved in every aspect of our lives, producing commodity plastics, modern electronics, biomedical materials, and much more. However, the vast majority of these polymers are derived from petroleum resources, creating both economic uncertainty and environmental risk. Biodegradable polyesters like poly(lactic acid) have provided one of the most promising solutions to this challenge, building plastics from renewable resources through a catalysed polymerisation reaction. Despite the hype and expectation, these renewable polymers account for less than 5% of all commercial polymers. Why this limitation? Replacing all commodity plastics is difficult because of the limited range of properties accessible with PLA and its copolymers. One strategy to overcome this final roadblock is to develop polyesters with different functional groups - however current synthetic methods provide low yields of monomer feedstocks or derive from toxic reagents. This proposal builds on an important recent discovery of a new synthetic strategy to target these structurally divergent plastics. New monomers, built entirely from renewable resources, can be ring-opened to afford plastics with a broad range of functional groups. The products have the potential to transform traditional polymer markets, potentially serving as biodegradable mimics of polystyrene, as new biodegradable feedstocks for health applications, and as commodity plastics with a significantly broader range of thermal properties. Importantly, this project will also address the first stages of monomer and polymer scale up, moving the discovery from laboratory towards an industrial scale to facilitate commercialisation and materials testing of the new plastics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P026095/2
    Funder Contribution: 214,899 GBP

    The polymer industry is intimately involved in every aspect of our lives, producing commodity plastics, modern electronics, biomedical materials, and much more. However, the vast majority of these polymers are derived from petroleum resources, creating both economic uncertainty and environmental risk. Biodegradable polyesters like poly(lactic acid) have provided one of the most promising solutions to this challenge, building plastics from renewable resources through a catalysed polymerisation reaction. Despite the hype and expectation, these renewable polymers account for less than 5% of all commercial polymers. Why this limitation? Replacing all commodity plastics is difficult because of the limited range of properties accessible with PLA and its copolymers. One strategy to overcome this final roadblock is to develop polyesters with different functional groups - however current synthetic methods provide low yields of monomer feedstocks or derive from toxic reagents. This proposal builds on an important recent discovery of a new synthetic strategy to target these structurally divergent plastics. New monomers, built entirely from renewable resources, can be ring-opened to afford plastics with a broad range of functional groups. The products have the potential to transform traditional polymer markets, potentially serving as biodegradable mimics of polystyrene, as new biodegradable feedstocks for health applications, and as commodity plastics with a significantly broader range of thermal properties. Importantly, this project will also address the first stages of monomer and polymer scale up, moving the discovery from laboratory towards an industrial scale to facilitate commercialisation and materials testing of the new plastics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S031405/1
    Funder Contribution: 1,222,950 GBP

    The Government's Industrial Strategy highlights the need for the construction industry to embrace digitally-driven, automated manufacturing if it is going to deliver the planned infrastructure development, building and renovation of the built environment. The group funded through this award understands this need and envisages an industry that routinely deploys digitally-driven, off-site-manufacturing technologies to deliver customised and unique precision components to enable the rapid, just-in-time assembly of the built environment. Seamless digital workflow and accurate process simulation will reduce the time from design to product from weeks to hours, delivering buildings faster. It will facilitate the optimisation of components, removing unwanted material (reduced resource use and embedded CO2), designing out interfaces and reducing assembly time and complexity, both during installation and at end of life. 3D Concrete Printing (3DCP) is a digitally-driven, off-site manufacturing technology that is establishing itself worldwide as a viable manufacturing process, but its potential beyond aesthetic objects is fundamentally limited by the manufacturing tolerances achievable. The work undertaken by this group will develop the next generation, Hybrid Concrete Printing (or HCP), technology that uses 3DCP to create a near-net-shape (an object slightly larger than the desired object) and then uses subtractive process (cutting, milling and drilling) to remove a small amount of material to create the net-shape - the desired object to sub-millimetre precision. HCP technology will enable the intelligent integration of building performance and energy production and storage technologies, freed from traditional constraints on form and finish. This will unlock the potential for accurate interfaces and assemblies and, hence, open the gateway for a revolution in design and manufacture of buildings and the wider built environment. The team will develop research that answers three central goals of the Industrial Strategy Challenge Fund's Transforming Construction initiative: - Designing and managing buildings: We will develop and promote new design tools and design capabilities for UK design practise that will create globally marketable expertise; - Constructing quality buildings: HCP, a digitally-driven off-site manufacturing technology, will realise greater precision in manufacture than is currently possible, enabling repeatable, high quality components to be manufactured with a much shorter lead-time; and, - Powering buildings: The technology gives the designer close control of surface finish and component geometry, enabling them to add value through function and to design in order to integrate other active components as part of automated assembly.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K014749/1
    Funder Contribution: 2,402,100 GBP

    Oil is the most important source of energy worldwide, accounting for 35% of primary energy consumption and the majority of chemical feedstocks. The quest for sustainable resources to meet demands of a constantly rising global population is one of the main challenges for mankind this century. To be truly viable such alternative feedstocks must be sustainable, that is "have the ability to meet 21st century energy needs without compromising those of future generations." Development of efficient routes to large-scale chemical intermediates and commodity chemicals from renewable feedstocks is essential to have a major impact on the economic and environmental sustainability of the chemical industry. While fine chemical and pharmaceutical processes have a diverse chemistry and a need to find green alternatives, the large scale production of petrochemical derived intermediates is surely a priority issue if improved overall sustainability in chemicals manufacture is to be achieved. For example, nylon accounts for 8.9% of all manmade fibre production globally and is currently sourced exclusively from petrochemicals. It is one of the largest scale chemical processes employed by the chemicals sector. Achieving a sustainable chemicals industry in the near future requires 'drop in' chemicals for direct replacement of crude oil feedstocks. The production of next-generation advanced materials from the sustainably-sourced intermediates is a second key challenge to be tackled if our reliance on petrochemicals is to end The project will develop new heterogeneously catalysed processes to convert cellulose derivatives to high value platform and commodity chemicals. We specifically target sustainable production of intermediates for manufacture of polyamides and acrylates, thereby displacing petroleum feedstocks. Achieving the aims of the project requires novel multifunctional catalyst technology which optimises the acid-base properties, hydrogen transfer and deoxygenation capability. Using insights into catalyst design gleaned from our previous work, a directed high-throughput (HT) catalyst synthesis and discovery programme will seek multifunctional catalyst formulations for key biomass transformations. Target formulations will be scaled up and dispersed onto porous architectures for study in lab-scale industrial-style reactors. We will also seek to exploit multi-phase processes to improve selectivity and yield. This will be combined with multi-scale systems analysis to help prioritise promising pathways, work closely with industry to benchmark novel processes against established ones, develop performance measures (e.g. life cycle analysis (LCA)) to set targets for catalytic processes and explore optimal integration strategies with existing industrial value chains. Trade-offs between optimising single product selectivity versus allowing multiple reaction schemes and using effective separation technology in a "multiproduct" process will be explored. The potential utilization of by-products as fuels, sources of hydrogen, or as chemical feeds, will be evaluated by utilizing data from parallel programmes.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.