Powered by OpenAIRE graph
Found an issue? Give us feedback

FLOWPHYS AS

Country: Norway
12 Projects, page 1 of 3
  • Funder: European Commission Project Code: 723838
    Overall Budget: 4,627,190 EURFunder Contribution: 3,705,620 EUR

    Waste heat is a problem common to high temperature processing industries as a significantly underused resource, often due to challenges in economic heat valorisation. Secondary aluminium recycling and ceramic processing were identified as key examples with economically recoverable waste heat. Several challenges are inherent; these processes are batch-based rather than continuous with corrosive particulate-laden flue gas over a wide temperature range. The Smartrec system meets these challenges by development of a standard, modular solution for integration of heat recovery with thermal storage that valorises medium to high grade waste heat, adaptable to different temperatures and industries. Following end-user analysis and characterisation of exhaust streams and waste products, full life cycle costing and assessment will be carried out with candidate molten salts selected for thermal storage and heat transfer fluid, validated by corrosion testing. A custom heat pipe heat exchanger will be modelled and designed around the requirements of heat transport capacity wick structure and capable of heat exchange with a molten salt pumping loop. This loop will include dual media thermocline thermal storage system with cost/system modelling, validation and instrumentation incorporated. A pilot Smartrec system will be constructed and deployed in a secondary aluminium recycler and/or ceramic processor valorising high grade heat for continuous energy-intensive salt-cake recycling. Smartrec will be validated by integration with existing systems with >6 months operation including a fully developed instrumentation framework. A knowledge-based tool will be developed containing all relevant Smartrec parameters and information to model the system fully and allow users to determine their requirements, potential benefits and integrate Smartrec into their own systems via an open access workshop hosted by the consortium.

    more_vert
  • Funder: European Commission Project Code: 101138842
    Funder Contribution: 6,000,000 EUR

    The ALABAMA project aims to develop and mature adaptive laser technologies for AM. The objective is to lower decrease the porosity and to tailor the microstructure of the deposited material by shaping the laser beam, both temporally and spatially, during the AM process. The key innovations in the project are to develop multiscale physics-based models to enable optimization of the AM process. These process parameters will be tested and matured for multi-beam control, laser beam shaping optics and high-speed scanning. To ensure the quality of the process, advanced online process monitoring and closed loop control will be performed using multi spectral imaging and thermography to control the melt pool behavior coupled with wire-current and high-speed imaging to control the process. To verify that the built material fulfills the requirements, advanced characterization will be conducted on coupons and on use-cases. The matured technology will be tested on three use-cases; aviation, maritime and automotive. These three industrial sectors span a broad part of the manufacturing volumes: from low numbers with high added value, to high numbers with relatively low cost. However, all these sectors struggle with distortions, stresses and material quality. The ALABAMA use-case demonstrators will improve the compensation for distortions during the AM process, reduce the build failures due to residual stresses, reduce porosity and improve tailoring of the microstructure. Overall, this will contribute to up to 100% increase in process productivity, 50% less defects, 33% cost reduction due to increased productivity and energy savings, a reduction of 15% in greenhouse gases and enable first time-right manufacturing thanks to simulation, process monitoring and adaptive control. The end users will insert the technologies while the sub-technologies developed in the work packages will be commercialized. This will increase the autonomy for a resilient European industry.

    more_vert
  • Funder: European Commission Project Code: 822106
    Funder Contribution: 7,500,000 EUR

    WeldGalaxy project will deliver, a B2B online Platform that brings together global buyers (end-users/OEM) and EU sellers (manufacturers/suppliers/distributors/service providers) of welding equipment along with auxiliaries/consumables and services, thereby enhancing the visibility of EU’s welding products/prototypes/services to global users (via digital marketing strategies) and providing innovative web-based services (e.g. equipment selection and inventory management, digital design/testing of equipment capabilities) to boost EU market share and competitiveness. The digital platform will incorporate Knowledge base engineering (KBE) tool that streamlines equipment selection process for end-users and allows ‘plug and produce’ digital manufacturing of the right equipment to specified customers’/end-users’ requirements and regulatory compliance. Though the full capability of the WeldGalaxy platform including associated product services (including the services from all third parties) will be demonstrated in welding equipment (along with auxiliaries) and consumables manufacturing domain, yet, the conceptual and functional framework of WeldGalaxy technology concept can be used in any industrial domain related to manufacturing. The Dynamic Knowledge Management based B2B platform will be designed by following the standard 3-tier architecture. Scalability and reliability will be assured by the use of: RESTfull architecture for API layer, cloud-based backend platform hosted on mainstream cloud providers like AWS or Google Cloud Platform who offer clustering, loading balancing, caching to support scalability and redundant data backup to ensure reliability. Use of blockchain/Distributed Ledger Technology (DLT) will make the platform inherently stable, highly scalable and always up. The digital platform, supported by integrated blockchain/DLT for improved reliability/visibility/ transparency/ security of transactions, will enhance the competitiveness of EU manufacturing sec

    more_vert
  • Funder: European Commission Project Code: 101135796
    Overall Budget: 4,457,950 EURFunder Contribution: 4,457,790 EUR

    The main objective of COMPAS is to develop a compact, inexpensive and ultrasensitive PIC sensing platform (PSP) for air and water monitoring, relying on the co-integration of light source, detectors and electronic IC for on-chip signal processing. The PIC sensor principle will be based on interference between two guided light modes, one of which interacts with analytes and the other being a reference. The resulting intensity changes offers excellent sensitivity to changes in concentration of analytes in air or solution. Multiple light paths can be placed on the same device offering multi-analyte sensing in an ultracompact device. COMPAS builds a first-of-a-kind fully integrated system around this principle (including light source, detectors and signal processing). The COMPAS PSP begins at TRL2 and will end with TRL5 validation in relevant environment by end-users towards air and water monitoring. The project will - Define sensing parameters for validating developed PIC Sensor Platform (PSP) towards three use-cases in relevant environments, being in line with the European Green Deal’s zero pollution ambition - Develop core photonic technology for implementing photonic based sensing. These include a novel photonic IC material system (Aliminium Nitride), BiModal waveguide interferometers that show superior temperature stability and sensitivity, novel material coating systems for enhanced sensing selectivity and innovative nano structured metasurfaces for novel mode engineering for increased sensitivity and optimized light coupling to facilitate the use of low power laser diodes. - Develop a Chiplet approach to co-integration of photonic sensor with microelectronic IC and photodetectors, and a coherent light-source. This will combine heterogeneous integration of a laser light source and monolithically integrated photodetector in the silicon base material.

    more_vert
  • Funder: European Commission Project Code: 764086
    Overall Budget: 4,722,720 EURFunder Contribution: 4,722,720 EUR

    The Geo-coat project has been specified as necessary by our geothermal power and equipment manufacturing members, who, in order to reliably provide energy, need to improve plant capability to withstand corrosion, erosion and scaling from geofluids, to maintain the equipment up-time and generation efficiency. Additionally they need to be able to produce better geothermal power plant equipment protection design concepts through virtual prototyping to meet the increasing requirements for life cycle costs, environmental impacts and end-of-life considerations. Current materials, transferred from oil and gas applications to these exceptionally harsh environments, (and the corresponding design models) are not capable of performing, leading to constant need to inspect and repair damage. The Geo-coat project will develop new resistant materials in the form of high performance coatings of novel targeted "High Entropy Alloys" and Cermets, thermally applied to the key specified vulnerable process stages (components in turbines, valves, pumps, heat exchangers and pipe bends) in response to the specific corrosion and erosion forces we find at each point. We will also capture the underlying principles of the material resistance, to proactively design the equipment for performance while minimising overall capex costs from these expensive materials. The Geo-coat consortium has user members from geothermal plant operations and equipment manufacture to ensure the project's focus on real-world issues, coupled with world-leading experience in the development of materials, protective coatings and their application to harsh environments. In addition to developing the new coating materials and techniques, we also aim to transfer our experiences from the development of Flow Assurance schemes for Oil&Gas and Chemical industries to provide a new overarching set of design paradigms and generate an underpinning Knowledge Based System.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.