Powered by OpenAIRE graph
Found an issue? Give us feedback

AB Sugar (British Sugar Group)

Country: United Kingdom

AB Sugar (British Sugar Group)

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S031421/1
    Funder Contribution: 979,443 GBP

    One class of electrochemical reaction are reactions in the plasma state. The PI and his team have been pioneering plasma microreactors that feed directly into microbubbles for the last decade. With the output of the plasma reactor entering the microbubble directly, the maximum activation is retained in the bubble, which then mediates the formation of active species on the microbubble interface. Recently, this approach has been used to catalyse the esterification reaction of free fatty acids to form esters (particularly biodiesel). More than the effectiveness of the plasma activated microbubble reaction, microbubble processing is not limited by surface area of "electrode" in quite the same way. The grand aim of this proposal is to create heterogeneous catalysis capability by tuning the plasma activated species on the gas-liquid interface of microbubbles. Conventional electrochemistry has severe issues around upscaling. Plasma microreactors, particularly those that feed into liquid media as injected microbubbles, are a class of electrochemical reactors that can potentially upscale readily. Microbubbles can have hectares of gas-liquid interface per cubic metre of liquid reactant volume, so if the (plasma)electrochemical reaction can be catalysed on the gas-liquid interface, high throughput reaction rates can be achieved in large volume, continuous flow reactors. Already achieved in pilot plant studies of anaerobic digestion is a bubble surface area flux of 0.15 hectares/sec! If even a fraction of this surface area flux is effective at mediating plasma chemical transformations, the rate of transformation processes should far exceed conventional heterogeneous reactions. This project aims to optimise how the formation of plasma-activated species is coupled to the transient operation of the plasma electronics that create the excited species that eventually react at microbubble gas-liquid interfaces. Preliminary studies show that the composition of an excited air plasma, for instance, can dramatically change with the contacting time in the reactor and the electric field applied. They also suggest that how that electric field is applied in space and time dramatically affects the chemical composition of the plasma, and consequently what chemical reactions dominate the microbubble mediated gas-liquid chemistry. The purpose of this proposal is to characterise this coupling between the time-varying plasma electronics output, as implemented with tuneable electrical engineering design, and the induced chemistry of the plasma and microbubble mediated reaction. The characterisation will be captured in computer models that permit inversion; from the desired chemical outputs, the optimum plasma electronics design, control and operating mode ("the waveform") will be predicted. In the UK plasma chemistry research is vibrant but the work is mainly centred on nuclear science, capactively coupled plasmas with applications to surface treatment (i.e. EP/K018388/1) and medical applications. Globally, several research groups are investigating tailored waveform plasmas more generally but not with specific application to chemical generation on an industrial scale. The proposed closed-loop control of tailored waveform plasma microbubble reactors offers new possibilities to increase efficiency, throughput and scale-up. This, therefore, complements the contributions from these research groups (both national and international) and so will stimulate new research and commercial opportunities. By bringing together experts from the interface of chemical engineering, electrical engineering and mathematics who, together with some eight project partners providing £160k of support, can drive a blue-skies approach to targeted waveform control of plasma reactions (using novel chemical modelling and waveform generator design) while blazing a trail for industrial adaptation to a game-changing approach to chemical production.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W019132/1
    Funder Contribution: 1,457,220 GBP

    The chemical and pharmaceutical industries are currently reliant on petrochemical derived intermediates for the synthesis of a wide range of valuable chemicals, materials and medicines. Decreasing petrochemical reserves, and concerns over increasing cost and greenhouse gas emissions, are now driving the search for renewable and environmentally friendly sources of these critically needed compounds. This project aims to establish a range of new manufacturing technologies for efficient conversion of biomass in agricultural waste streams into sustainable sources of these valuable chemical intermediates. The UK Committee on Climate Change (2018) has highlighted the importance of the efficient use of agricultural biomass in tackling climate change. The work undertaken in this project will contribute to this effort and help the UK government achieve its stated target of 'net-zero emissions' by 2050. The new approaches will be exemplified using UK-sourced Sugar Beet Pulp (SBP) a renewable resource in which the UK is self-sufficient. Over 8 million tonnes of sugar beet is grown annually in the UK on over 3500 farms concentrated in East Anglia and the East Midlands. After harvest, the beet is transported to a small number of advanced biorefineries to extract the main product; the sucrose we find in table sugar. SBP is the lignocellulosic material left after sucrose extraction. Currently it is dried (requiring energy input) and then sold as a low-value animal feed. SBP is primarily composed of two, naturally occurring, biological polymers; cellulose and pectin. Efficient utilisation of this biomass waste stream demands that applications are found for both of these. This work will establish the use of the cellulose nanofibres for making antimicrobial coatings and 3D-printed scaffolds (in which cells can be cultured for tissue engineering and regenerative medicine applications). The pectin will be broken down into its two main components: L-arabinose and D-galacturonic acid. The L-arabinose can be used directly as a low-calorie sweetener to combat the growing problem of obesity. The D-galacturonic acid will be modified in order to allow formation of biodegradable polymers which have a wide range of applications. This new ability to convert SBP into a range of useful food, chemical and healthcare products is expected to bring significant social, economic and environmental benefits. In conducting this research we will adopt a holistic approach to the design of integrated biorefineries in which these new technologies will be implemented. Computer-based modelling tools will be used to assess the efficiency of raw material, water and energy utilisation. Techno-Economic Analysis (TEA) and Life Cycle Analysis (LCA) approaches will be employed to identify the most cost-effective and environmentally benign product and process combinations for potential commercialisation. The results will be widely disseminated to facilitate public engagement with the research and ethical evaluation. In this way the work will support the UK in its transition to a low-carbon, bio-based circular economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P006965/1
    Funder Contribution: 10,864,800 GBP

    Our Hub research is driven by the societal need to produce medicines and materials for modern living through novel manufacturing processes. The enormous value of the industries manufacturing these high value products is estimated to generate £50 billion p.a. in the UK economy. To ensure international competitiveness for this huge UK industry we must urgently create new approaches for the rapid design of these systems, controlling how molecules self-assemble into small crystals, in order to best formulate and deliver these for patient and customer. We must also develop the engineering tools, process operations and control methods to manufacture these products in a resource-efficient way, while delivering the highest quality materials. Changing the way in which these materials are made, from what is called "batch" crystallisation (using large volume tanks) to "continuous" crystallisation (a more dynamic, "flowing" process), gives many advantages, including smaller facilities, more efficient use of expensive ingredients such as solvents, reducing energy requirements, capital investment, working capital, minimising risk and variation and, crucially, improving control over the quality and performance of the particles making them more suitable for formulation into final products. The vision is to quickly and reliably design a process to manufacture a given material into the ideal particle using an efficient continuous process, and ensure its effective delivery to the consumer. This will bring precision medicines and other highly customisable projects to market more quickly. An exemplar is the hubs exciting innovation partnership with Cancer Research UK. Our research will develop robust design procedures for rapid development of new particulate products and innovative processes, integrate crystallisation and formulation to eliminate processing steps and develop reconfiguration strategies for flexible production. This will accelerate innovation towards redistributed manufacturing, more personalisation of products, and manufacturing closer to the patient/customer. We will develop a modular MicroFactory for integrated particle engineering, coupled with a fully integrated, computer-modelling approach to guide the design of processes and materials at molecule, particle and formulation levels. This will help optimise what we call the patient-centric supply chain and provide customisable products. We will make greater use of targeted experimental design, prediction and advanced computer simulation of new formulated materials, to control and optimise the processes to manufacture them. Our talented team of scientists will use the outstanding capabilities in the award winning £34m CMAC National Facility at Strathclyde and across our 6 leading university spokes (Bath, Cambridge, Imperial, Leeds, Loughborough, Sheffield). This builds on existing foundations independently recognised by global industry as 'exemplary collaboration between industry, academia and government which represents the future of pharmaceutical manufacturing and supply chain R&D framework'. Our vision will be translated from research into industry through partnership and co-investment of £31m. This includes 10 of world's largest pharmaceutical companies (eg AstraZeneca, GSK), chemicals and food companies (Syngenta, Croda, Mars) and 19 key technology companies (Siemens, 15 SMEs) Together, with innovation spokes eg Catapult (CPI) we aim to provide the UK with the most advanced, integrated capabilities to deliver continuous manufacture, leading to better materials, better value, more sustainable and flexible processes and better health and well-being for the people of the UK and worldwide. CMAC will create future competitive advantage for the UK in medicines manufacturing and chemicals sector and is strongly supported by industry / government bodies, positioning the UK as the investment location choice for future investments in research and manufacturing.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K030957/1
    Funder Contribution: 4,501,050 GBP

    Centre vision: The EPSRC Centre for Innovative Food Manufacturing will meet the challenges of UK and global food security through developing world-leading technologies, tools and leaders, tailored to the specific needs of food products. With a turnover of £76.2bn (20% of the UK total), Food and drink is the largest manufacturing sector in the UK employing around 400,000 people. With an anticipated rapid growth in 'better value' products and in products designed for the nation's Health and Wellness, in particular for the ageing population, food manufacturing requires innovation in increased productivity - to produce more from less - to preserve natural resources such as water and energy, to minimise waste generation and to decrease the trade deficit in the sector. Crucially this will enable the UK food sector to be at the forefront of the next generation of sustainable production which are more natural and healthier., and to develop more resilient supply chains leading to state of the art manufacturing capability, in an increasingly competitive landscape. The proposed research focuses on identifying not only new sources of raw material but also on reducing the demand on existing resources through a simultaneous improvement of food products, manufacturing methods and supply networks. In this context, some of the key research questions are: How do we fully valorise biomass (including waste re-use) as new sources of raw material in food production?; How can we design and manufacture products with the high nutritional values using fewer raw materials?; How do we improve the efficiency of food production processes (e.g. through smart monitoring technologies; process intensification / flexible manufacturing) to consume fewer resources (materials, energy and water) across the supply chain?; How can we eliminate the production and post-production waste caused by inefficient supply and manufacturing activities and /or relationships? The scope of the proposed research focuses on the manufacturing activities from 'post-farm gate to supermarket shelf', and will be considered under two specific Grand Challenges (GC): 1) Innovative materials, products and processes and 2) Sustainable food supply and manufacture. These research challenges closely align with the EPSRC call for 'Centres for Innovative Manufacturing', in particular the three areas of Resource Efficiency in Manufacturing: processes and technologies towards complete reuse of key materials and components; the need to dramatically reduce energy demand, including the incorporation of smart energy monitoring and management technologies; optimisation of material and product re-use, re-manufacturing and recycling, Innovative Production Processes: manufactured foods being complex formulated systems, and Complex Multifunctional Products: food is a high volume product assembled using processes which operate from the nano- (raw material) to the macro-scales (packaged goods). The proposed EPSRC Centre brings together world leading expertise in the areas of biomaterial science, formulation engineering and sustainable manufacturing. Loughborough and Nottingham are involved in the current EPSRC Centres and will ensure complementarities with other EPSRC research portfolios. The Centre will deliver demonstrable tools, methods and specific technologies, will develop academic and industrial leaders, and will provide evidence to support future policy making, thus ensuring the long-term competitiveness and security of the UK and global food supply chain. The proposal benefits from the interest and support of a wide range of stakeholders from ingredient producers and manufacturers to retailers and governmental organisations and has exploitation opportunities as the research challenges fit with the strategic themes in the new TSB High Value Manufacturing Strategy 2012-2015.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.