Powered by OpenAIRE graph
Found an issue? Give us feedback

Beta Technology Limited

Beta Technology Limited

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/Y53058X/1
    Funder Contribution: 6,430,850 GBP

    Technology critical metals (TCMs) are pivotal to achieving Net Zero goals. These metals include for example lithium, cobalt, rare earths and platinum group metals. TCMs are deemed to be "critical" because they are economically important but at risk of short supply. The UK Government's Net Zero Strategy: "Build Back Greener" (2021) highlights the supply of these materials as a key challenge for the UK's energy transition and the need for a circular economy in these materials. They are used in wind-power, EV motors and batteries, LEDs, solar-cells and the hydrogen economy. The Government's (2022) Critical Minerals Strategy, "Resilience for the Future", emphasises the importance of these materials and the global supply-chain pressures. The UK's first critical mineral list identified 18 elements as TCMs (British Geological Survey, 2022). Currently, recycling rates for TCMs are very low, for example < 5% for neodymium , used in rare earth magnets ("Critical Raw Materials Resilience" EU report). There are a number of reasons for this, including a lack of specific incentives or legislation, current product designs often impede separation, in some applications there is a very low concentration of the critical material, often the value chains are fragmented, and current recycling processes, designed for bulk metals, are rather crude resulting in the finely distributed TCMs being lost in a linear economy. The overarching aim of RECREATE is to develop a circular economy for TCMs, keeping the materials or components in the highest value form with the lowest environmental footprint. The project brings together three of the leading research institutes in the UK (Universities of Birmingham, Leicester and Edinburgh) who each specialise in different technologies for the extraction and re-use or recycling of TCMs. The project includes leading industrial and public-sector players and policy makers, all involved in the drive to create a circular economy for critical materials in the UK. The research is informed by a system-wide perspective derived from a deep understanding of the industrial challenges for recycling of these materials, and of the governance structures that drive a circular economy. This project will undertake low TRL transformative research to generate radical improvements in automated sorting, "short loop" recycling, pyrometallurgical and chemical processes with reduced environmental impact, biological processes for dilute effluents, and new materials and product-designs which make re-use or recycling easier. Ultimately the project is developing a toolbox of technologies which can sense, sort, separate and re-use or recycle a broad range of TCMs from a wide range of products. These new technologies will be benchmarked using life cycle and techno economic assessment and the legislative drivers for a circular economy will be explored.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S036237/1
    Funder Contribution: 1,027,940 GBP

    The 20th Century was characterised by a massive global increase in all modes of transport, on land and water and in the air, for moving both passengers and freight. Whilst easy mobility has become a way of life for many, the machines (planes, automobiles, trains, ships) that enable this are both highly resource consuming and environmentally damaging in production, in use and at the end of their working lives (EoL). Over the years, great attention has been paid to increasing their energy efficiencies, but the same effort has not been put into optimising their resource efficiency. Although they may share a common origin in the raw materials used, the supply chains of transport sectors operate in isolation. However, there are numerous potential benefits that could be realised if Circular Economy (CE) principles were applied across these supply chains. These include recovery of energy intensive and/or technology metals, reuse/remanufacture of components, lower carbon materials substitutions, improved energy and material efficiency. While CE can change the transport system, the transport system can also enable or disable CE. By considering different transport systems in a single outward-looking network, it is more likely that a cascading chain of materials supply could be realised- something that is historically very difficult within just a single sector. CENTS will focus on transport platforms where CE principles have not been well embedded in order to identify synergies between different supply chains and to optimise certain practices, such as EoL recovery and recycling rates and energy and material efficiency. It will also be 'forward looking' in terms of developing future designs, business models and manufacturing approaches so that emergent transport systems are inherently circular. More specifically, our Network will carry out Feasiblity and Creativity@Home generated research that will develop the ground work for future funding from elsewhere; provide travel grants to/from the UK for both established and Early Career Researcgers to increase the UK network of expertise and experience in this critical area; hold conferences and workshops where academics and industrialists can learn from each other; build demonstrators of relevant technology so that industry can see what is possible within a Circular Economy approach. These activities will all be supported by a full communication strategy focusing on outreach with school children and policy influence though agencies such as Catapults and WRAP.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V011855/1
    Funder Contribution: 4,436,180 GBP

    The Circular Economy (CE) is a revolutionary alternative to a traditional linear, make-use-dispose economy. It is based on the central principle of maintaining continuous flows of resources at their highest value for the longest period and then recovering, cascading and regenerating products and materials at the end of each life cycle. Metals are ideal flows for a circular economy. With careful stewardship and good technology, metals mined from the Earth can be reused indefinitely. Technology metals (techmetals) are an essential, distinct, subset of specialist metals. Although they are used in much smaller quantities than industrial metals such as iron and aluminium, each techmetal has its own specific and special properties that give it essential functions in devices ranging from smart phones, batteries, wind turbines and solar cells to electric vehicles. Techmetals are thus essential enablers of a future circular, low carbon economy and demand for many is increasing rapidly. E.g., to meet the UK's 2050 ambition for offshore wind turbines will require 10 years' worth of global neodymium production. To replace all UK-based vehicles with electric vehicles would require 200% of cobalt and 75% of lithium currently produced globally each year. The UK is 100% reliant on imports of techmetals including from countries that represent geopolitical risks. Some techmetals are therefore called Critical Raw Materials (high economic importance and high risk of supply disruption). Only four of the 27 raw materials considered critical by the EU have an end-of-life recycling input rate higher than 10%. Our UKRI TechMet CE Centre brings together for the first time world-leading researchers to maximise opportunities around the provision of techmetals from primary and secondary sources, and lead materials stewardship, creating a National Techmetals Circular Economy Roadmap to accelerate us towards a circular economy. This will help the UK meet its Industrial Strategy Clean Growth agenda and its ambitious UK 2050 climate change targets with secure and environmentally-acceptable supplies of techmetals. There are many challenges to a future techmetal circular economy. With growing demand, new mining is needed and we must keep the environmental footprint of this primary production as low as possible. Materials stewardship of techmetals is difficult because their fate is often difficult to track. Most arrive in the UK 'hidden' in complex products from which they are difficult to recover. Collection is inefficient, consumers may not feel incentivised to recycle, and policy and legislative initiatives such as Extended Producer Responsibility focus on large volume metals rather than small quantity techmetals. There is a lack of end-to-end visibility and connection between different parts of techmetal value chains. The TechMet consortium brings together the Universities of Exeter, Birmingham, Leicester, Manchester and the British Geological Survey who are already working on how to improve the raw materials cycle, manufacture goods to be re-used and recycled, recycle complex goods such as batteries and use and re-use equipment for as long as possible before it needs recycling. One of our first tasks is to track the current flows of techmetals through the UK economy, which although fundamental, is poorly known. The Centre will conduct new interdisciplinary research on interventions to improve each stage in the cycle and join up the value chain - raw materials can be newly mined and recycled, and manufacturing technology can be linked directly to re-use and recycling. The environmental footprint of our techmetals will be evaluated. Business, regulatory and social experts will recommend how the UK can best put all these stages together to make a new techmetals circular economy and produce a strategy for its implementation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E002323/1
    Funder Contribution: 17,848,800 GBP

    The Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.