Powered by OpenAIRE graph
Found an issue? Give us feedback

CIBSE

Country: United Kingdom
24 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/I000259/1
    Funder Contribution: 597,628 GBP

    The recent availability of very low power (e.g., battery powered) wireless sensors, networks and personal communication devices has enabled the exploration of wireless systems for both monitoring personal energy use and for feeding back the information directly to individuals responsible. These are based on static wireless sensors utilising low cost, small, low power digital radio (ZigBee) and real-time user location sensors using RFID and Ultra-wideband (UWB) radio frequency technologies. Low cost, low power, user feedback technologies include Ekahau Wi-Fi based devices and mobile phones.The Wi-be system is truly user-centric and promises huge potential for instigating behaviour change and substantial energy demand reduction: it complements the smart metering technology and takes a significant step further in helping to identify specific wasteful energy use, actions to take and the persons to take them. Unlike the smart meter, which is expected to provide overall consumption data in specific feedback formats [11], the Wi-be approach forms a people/building energy technology interface that promises much greater energy behaviour changes that are widely replicable and adaptable to future energy technology scenarios. When implemented and used over a period of time, it could potentially bring about a durable behavioural change leading to efficient energy uses.However, development of this technology gives rise to inter-related challenges spanning ICT, building energy and user behaviour, which so far are largely being researched in isolation. What is required is a multi-disciplinary study to bring about a step change in the understanding of Wi-be technology to ensure its effectiveness and successful uptake. Based on a new collaboration, the study will provide tools, guidance and vastly improved understanding for effective implementations of the technology that would result in durable and significant reduction of energy demand. Specific objectives include:1. Construct a state-of-the-art very-low-power Wi-be system for monitoring and communicating personal energy behaviours in both domestic and non-domestic buildings. This will involve both in-building and on-body sensors and will be installed in an office building and a house, to be used as test beds for the integrated research:2. Conduct cross-disciplinary assessment of Wi-be by integrating the following: a. Sensor Network Research - determining what is practical, in terms of building and body sensors, in order to capture energy-inefficient behaviour; b. Wireless Research - modelling of wireless sensor signal propagation to ascertain the optimum configurations (e.g., location, power levels) and potential limitations to physical deployment of wireless sensors, network and other related communication devices operating at very low power (and consequently very long battery life); c. Behavioural Research - determine the optimum feedback interface, format and timing of sensor data presentation to individual energy users in order to achieve the best effects on stimulating immediate action and durable behavioural change; d. Building Energy Research - to assess interactions between building energy demand, supply and user behaviour, as well as benchmarks, and their implications for optimum arrangement for feedback to users;3. To engage users, manufacturers and other stakeholders to ensure quality and relevance of the results and their effective dissemination for commercial deployment. Dissemination of the integrated methodology, established in this feasibility study, will permit future deployment into large scale assessments and commercial exploitation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I000259/2
    Funder Contribution: 154,426 GBP

    The recent availability of very low power (e.g., battery powered) wireless sensors, networks and personal communication devices has enabled the exploration of wireless systems for both monitoring personal energy use and for feeding back the information directly to individuals responsible. These are based on static wireless sensors utilising low cost, small, low power digital radio (ZigBee) and real-time user location sensors using RFID and Ultra-wideband (UWB) radio frequency technologies. Low cost, low power, user feedback technologies include Ekahau Wi-Fi based devices and mobile phones.The Wi-be system is truly user-centric and promises huge potential for instigating behaviour change and substantial energy demand reduction: it complements the smart metering technology and takes a significant step further in helping to identify specific wasteful energy use, actions to take and the persons to take them. Unlike the smart meter, which is expected to provide overall consumption data in specific feedback formats [11], the Wi-be approach forms a people/building energy technology interface that promises much greater energy behaviour changes that are widely replicable and adaptable to future energy technology scenarios. When implemented and used over a period of time, it could potentially bring about a durable behavioural change leading to efficient energy uses.However, development of this technology gives rise to inter-related challenges spanning ICT, building energy and user behaviour, which so far are largely being researched in isolation. What is required is a multi-disciplinary study to bring about a step change in the understanding of Wi-be technology to ensure its effectiveness and successful uptake. Based on a new collaboration, the study will provide tools, guidance and vastly improved understanding for effective implementations of the technology that would result in durable and significant reduction of energy demand. Specific objectives include:1. Construct a state-of-the-art very-low-power Wi-be system for monitoring and communicating personal energy behaviours in both domestic and non-domestic buildings. This will involve both in-building and on-body sensors and will be installed in an office building and a house, to be used as test beds for the integrated research:2. Conduct cross-disciplinary assessment of Wi-be by integrating the following: a. Sensor Network Research - determining what is practical, in terms of building and body sensors, in order to capture energy-inefficient behaviour; b. Wireless Research - modelling of wireless sensor signal propagation to ascertain the optimum configurations (e.g., location, power levels) and potential limitations to physical deployment of wireless sensors, network and other related communication devices operating at very low power (and consequently very long battery life); c. Behavioural Research - determine the optimum feedback interface, format and timing of sensor data presentation to individual energy users in order to achieve the best effects on stimulating immediate action and durable behavioural change; d. Building Energy Research - to assess interactions between building energy demand, supply and user behaviour, as well as benchmarks, and their implications for optimum arrangement for feedback to users;3. To engage users, manufacturers and other stakeholders to ensure quality and relevance of the results and their effective dissemination for commercial deployment. Dissemination of the integrated methodology, established in this feasibility study, will permit future deployment into large scale assessments and commercial exploitation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X029050/1
    Funder Contribution: 814,322 GBP

    Air conditioning (AC) is one of the major energy systems applied globally with a market size of around £80 billion per annum. Current AC technologies require large amounts of electrical or thermal energy, accounting for 20% global electricity consumption and resulting in 1,100 mega-tons of carbon emission. The project aims to establish a scientific foundation for a pioneering, near-zero-carbon and all-climate-adaptive AC system. Compared to existing AC technologies (i.e. mechanical vapour compression, absorption, and adsorption types), the new AC system leads to over 80%-90% energy bills saving, and near-zero carbon emission. Unlike existing evaporative cooling AC systems which only suit arid climates, the new AC will be all-climate-adaptive. Novelties of the research lie in: (1) The best performing sorption, diffusion, air-tight and light-absorptive materials will be identified and/or refined; (2) A unique sorption/desorption bed comprising an air-flow-interactive sorption layer and a light-absorptive desorption layer will be developed; (3) A bespoke natural light harvesting configuration to deliver a controlled light radiation into the desorption layer surface; (4) The latest Fractal theory in the first attempt to a multi-medium/sized porous block instead of the traditional single medium/sized porous block; (5) A unique multiple-scale light simulation model, which integrate a non-sequential ray tracing method for simulating the macro-scale light and a finite-difference time-domain method for simulating the light-moisture interaction on the porous desorption surface; (6) A novel 'life-cycle-cooling-cost' oriented optimisation method. The project research programme includes: (1) Screening, refinement, characterisation and selection of the sorption/desorption materials, and determination of the composition/combination methods of the selected materials; (2) Establishment of the theoretical foundation for the light collection/transmission/distribution and light-moisture interaction and conduction of associated computer simulation modelling; (3) Establishment of the theoretical foundation and computer models for moisture adsorption, permeation, diffusion and vaporisation within the porous 'moisture-breathing' bed, and optimisation of the structure of the 'moisture-breathing' bed; (4) Optimisation of the integrated operation between the light-driven 'moisture-breathing' bed and dew point air cooler using the 'life-cycle-cooling-cost' oriented method; and investigation of the AC's building integration approach; and (5) Construction/testing of the AC prototype (including microbial hazard control) and validation/refinement of the integrated AC computer model. The proposed research will be carried out by a cross-university and multi-disciplinary team comprising Prof. Xudong Zhao of UHULL who is the world-class academic specialised in heating, cooling, renewable energy and energy efficiency, Prof. Semali Perera of Bath who is a leading scientist specialised in porous sorption/desorption materials, Prof. Barry Crittenden who is a Fellow of Royal Academy of Engineering specialising in adsorption and membranes, Dr Carmelo Herdes who is specialized in molecular simulations, experiments and characterization of sorption/desorption materials and molecular transport with industrial relevance, Prof. Brad Gilbon of UHULL who is an internationally recognised optical scientist, Prof. Jeanette Rotchell of UHULL who is a leading scientist specialised in environmental biology, Dr. Xiaoli Ma of UHULL who has expertise in renewable energy and dew point cooling, and Dr. Zishang Zhu of UHULL who is specialised in integrating renewable energy system into buildings. The project team will be supported by FIVE UK industrial/governmental organisations.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/T013729/1
    Funder Contribution: 758,351 GBP

    As a result of global climate change, the UK is expected to experience hotter and drier summers, and heatwaves are expected to occur with greater frequency, intensity and duration. In 2003 and 2018, 2,091 and 863 heat-related deaths, respectively, were reported in England alone as a result of heatwaves, meaning future temperature increases could lead to a parallel rise in heat-related mortality. The UK also currently has a rapidly ageing population, with people aged 75 or over expected to account for 13% of the total population by 2035. Older populations are more vulnerable to climate-induced effects as they are more likely to have underlying, chronic health complications, making them more vulnerable to heat stress. The indoor environment is a principle moderator of heat exposure in older populations, who tend to spend the majority of their time indoors. Poor building design, the lack of effective heat management and diverging needs and preferences between staff and residents in care settings may contribute to increased indoor heat exposure with detrimental health impacts falling on the most vulnerable residents. Maladaptation to a warming climate, such as the uptake of air conditioning, could increase fuel bills in care homes, increase operational costs for businesses in the already financially stretched care sector, and increase building carbon emissions, thus undermining government efforts to reduce greenhouse gas emissions. The one-year pilot project 'Climate Resilience of Care Settings' and previous small-scale studies led by our research team have shown that UK care homes are already overheating even under non-extreme summers. A key target for climate adaptation in care settings is to limit such risks by introducing passive cooling strategies via building design. However, preliminary modelling as part of the pilot project also demonstrated that common passive cooling strategies may not adequately mitigate overheating risk in the 2050s and 2080s. Further research into advanced passive cooling strategies, combined with human behaviour and organisational change is required to identify optimum climate adaptation pathways for UK's care provision. The main aim of the project is to quantify climate related heat risks in care settings nationwide and enhance understanding of human behaviour, organisational capacity and governance to enable the UK's care provision to develop equitable adaptation pathways to rising heat stress under climate change. Building on the foundations of the pilot project, this novel, interdisciplinary project will collect, for the first time in the UK, longitudinal temperature and humidity data in a panel of 50 care settings in order to quantify the recurring risk of summertime overheating. We will also identify and assess social, institutional and cultural barriers and opportunities underpinning the governance of adaptation to a warmer climate in care and extra-care homes through surveys with residents, frontline care staff, managers and policy stakeholders. Within sub-samples of this panel, we will use innovative measurement techniques to collect residents' physiological data and study their relation with heat exposure and health impacts. Also for the first time in the UK, we will create a building stock model of the UK's care provision able to predict future overheating risks in care settings under a range of future climate change scenarios. This will help evaluate the effectiveness of near, medium and long term future overheating mitigation strategies and policies on thermal comfort and health outcomes. Throughout the project, we will continue to develop and expand the stakeholder community that was created during the pilot project. Through ongoing dialogue with our diverse network of stakeholders, we will explore organisational capacity and structures, and how these influence action and policy, in order to generate best practice guidance for practitioners, businesses and policymakers.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F029047/1
    Funder Contribution: 223,151 GBP

    Piped drainage systems form the backbone of urban drainage infrastructure, both in terms of foul and surface water drainage. The piped systems located in the upstream reaches of urban drainage networks include those installed within buildings and those local systems that connect buildings and their curtilages to the main sewer network; examples of local systems range from those serving a single residential property to those draining large retail parks. The purpose of this research is to improve the simulation of flow conditions within such systems, and hence facilitate the development of the integrated design methodologies required to meet the extra demands associated with the future impacts of climate change and water conservation measures.Flow conditions within building and local drainage systems are often complex, partly due to the highly unsteady nature of system inflows and partly due to their relatively complex and compact layouts; in particular, such systems commonly experience mixed flow conditions, characterised by both free surface and full bore flow regions separated by a hydraulic jump. In spite of this complexity, and the underlying importance of such systems to all sections of society, there are currently no numerical models available to accurately simulate the full range of mixed flow conditions that occur within building and local drainage systems. Without the ability to simulate such conditions, the challenges presented by system design to accommodate transitional flows can not be fully understood, and thus performance benefits remain unrealised. Whilst this situation is undesirable under current loading conditions, the consequences of these shortcomings is bound to increase in the future. It is now generally accepted that climate change will increase the frequency and severity of extreme rainfall events, and will hence result in increased surcharging of drainage systems conveying stormwater. Additional demands will also be placed on building and local drainage infrastructure due to changing demographics, increasing urbanisation and decreasing confidence in the long term viability of existing water supplies; these factors will lead to an increased emphasis on water conservation, as already highlighted by imminent changes to UK Building Regulations (which are likely to set minimum standards for water efficiency within buildings). There is clearly a very real need for enhanced tools to enable the wide range of stakeholders to develop the type of integrated designs necessary to meet both current and future performance requirements. The proposed research aims to meet this need by developing improved simulation models. The project will commence with a benchmarking exercise to assess the state of the art of mixed flow modelling. This will include the identification and experimental quantification of the key physical process, as well as a thorough assessment of existing techniques and their suitability to building and local drainage applications. These initial investigations will help drive model development activities, which will concentrate on formulating a novel numerical technique for the simulation of mixed flow conditions within small-medium diameter piped drainage systems (up to approximately 200mm). The developed technique will be incorporated into 1-D finite difference models for the simulation of conditions within building and local drainage systems. Dissemination of project findings will be critical in order to persuade relevant stakeholders of the benefits associated with the developed techniques and models, and to encourage uptake of the project recommendations and tools. In addition to traditional academic dissemination routes (journal and conference papers), project outcomes will also be publicised to a wider audience through presentations and seminars to professional bodies, industry organisations and wider research initiatives.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.