
University of California, Merced
University of California, Merced
3 Projects, page 1 of 1
assignment_turned_in Project2011 - 2014Partners:Articulate Instruments Ltd, University of Edinburgh, University of California, Merced, UCM, University of California System +1 partnersArticulate Instruments Ltd,University of Edinburgh,University of California, Merced,UCM,University of California System,Articulate Instruments LtdFunder: UK Research and Innovation Project Code: EP/I027696/1Funder Contribution: 586,154 GBPSpeech Sound Disorders (SSDs) are the most common communication impairment in childhood, affecting 6.5% of all UK children, or 2 children in every classroom. SSDs make it difficult for people to communicate with peers and integrate with society, yet the efficacy of interventions for most types of SSDs is weak. Speech, Language and Communication Disorders (SLCD) are a key UK government priority at present, with 2011 designated the national year of speech, language and communication . A recent government report (Bercow, 2008) highlighted the need for a programme of research to enhance the evidence base for children and young people with SLCD. Our programme of research aims to fulfill this need by developing technology which will aid the assessment, diagnosis and treatment of SSDs. Currently in Speech and Language Therapy, technological support is sparse. Technologies that do exist have been expensive to run or complicated to operate and hence not adopted in clinical practice. This project will develop technology (Ultrax) to turn ultrasound into a tongue imaging device specifically designed to provide real-time visual feedback of tongue movements. Most interventions for SSDs rely heavily on auditory skills; clients must listen to their own productions and modify them. However, with Ultrax people with SSDs will actually be able to see the movements of their own tongues and use this information to modify their speech. It is already possible to capture tongue movements by placing a standard medical ultrasound probe under the chin. Ultrasound has the potential to provide powerful information about atypical speech and to enable speakers to modify their own incorrect articulations. However, the image is grainy, information (especially about the tongue tip) is often lost and the image is difficult to interpret. We will improve this image by exploiting prior knowledge about the range of possible tongue shapes and movements in order to provide valuable constraints in tracking tongue contours in sequences of ultrasound images. We will apply a tongue model to this problem, making use of explicit sequence-based optimization for dynamic tracking and smoothing through time. We will use this technology to enhance the ultrasound images, transforming them into a dynamic, real-time 2D video of the tongue's movements which we hypothesize will be A) more easily understood by children B) extend the range of visible tongue shapes from only vowels and /r/ to include /t/,/k/,/ch/ and other consonants which are often targets for therapy Ultrax will be used to provide bio-feedback therapy for people with SSDs and to provide a means for objectively assessing progress by comparing tongue shapes before and after therapy. We will collect a large database of ultrasound and MRI images of tongue movements from 12 adults (ultrasound and MRI) and 90 primary school children (ultrasound) on which to base the model of tongue contours and to test its performance. At the same time, we will split the 90 children into 3 groups and record each group's response to one of 3 types of ultrasound display: 1. Raw, unenhanced, ultrasound 2. Unenhanced ultrasound with added anatomical context (e.g. the position of the teeth and roof of the mouth) 3. Fully enhanced ultrasound, developed in this project. The ability of the children to imitate tongue shapes and movements will be evaluated to determine whether they find the enhanced images easier to interpret than unenhanced images, leading to an improved ability use ultrasound for bio-visual feedback. We will trial ultrasound therapy with 9 children with SSDs (3 children for each type of display) enabling us to evaluate practical issues arising during therapy and pave the way for a future clinical trial. At the conclusion of our research project we will have developed the basis for a new visual-feedback tool (Ultrax) for Speech and Language Therapists to use in the diagnosis and treatment of SSDs.
more_vert assignment_turned_in Project2016 - 2018Partners:UA, Technical University of Crete, Chinese Academy of Science, Pennsylvania State University, University of Exeter +23 partnersUA,Technical University of Crete,Chinese Academy of Science,Pennsylvania State University,University of Exeter,Critical Zone Observatories (CZO),PSU,Penn State University College of Medicin,The University of Arizona,UCB,Tianjin University,University of Exeter,Institute of Earth Physics IPGP,Tianjin University,Peking University,University of Colorado at Boulder,CAS,Peking University,University of California System,Technical University of Crete,UCM,University of California, Merced,IPGP,Chinese Academy of Sciences,Critical Zone Observatories (CZO),UNIVERSITY OF EXETER,Peking University,Institute of Earth Physics IPGPFunder: UK Research and Innovation Project Code: NE/N007603/1Funder Contribution: 600,824 GBPThe SPECTRA programme seeks to enhance the sustainable development of one of the poorest regions of China, Guizhou, through cutting edge critical zone science undertaken by integrated, complementary and multidisciplinary teams of Chinese and UK scientists. The key question for management of the karst landscapes of SW China is "how can the highly heterogeneous critical zone resources be restored, to enable sustainable delivery of ecosystem services?" We know little about the geological, hydrological and ecological processes which control soil fertility and soil function in these landscapes and how best to manage them to maximise ecosystem service delivery. SPECTRA has been designed to address these questions through a suite of 4 interlinked workpackages. The CZ will span a gradient from undisturbed natural vegetation through to human perturbed and highly degraded landscapes. Using cutting-edge approaches we will integrate measurements of: (1) the three-dimensional distribution of plants (including roots), soil, fungi, and microbes; (2) rates of rock weathering, elemental release and soil formation processes; (3) rates of erosion and soil redistribution; and, (4) pools and fluxes of soil organic C (SOC), nitrogen (N) and phosphorus (P). This will allow us to identify the biological controls on nutrient availability, soil formation and loss in the CZ and their response to perturbation, providing the rich evidence base needed to inform land management decision-making in the Guizhou province. In doing so, SPECTRA will directly address the Newton Fund objective of enhancing economic development and social welfare by providing rigorous applied scientific knowledge that will underpin the development of strategies to improve net ecological service delivery from the karst landscape, informing realistic economic and ecological compensation plans to alleviate poverty, particularly for the households that rely on fragile soils for a living. The project is also designed to maximise the benefits to the science communities of both countries, thereby bringing significant institutional benefits to all partners. Training of Chinese Early Career Researchers in state-of-the-art approaches and techniques in leading UK laboratories is an absolute priority of the scientific partnership, and combined with the networking opportunities between project partners in the global CZ community, will contribute significantly to meeting the Newton Fund objective of building the capacity for CZ Science in China. The ultimate beneficiaries of this project will be the people of Guizhou karst region (population 35 million), which is one of the poorest regions in China with a GDP less than 50% of the national average. In response to the environmental deterioration and changing social conditions in the Guizhou karst region, the Chinese government has intervened to promote the abandonment of the most degraded cultivated land and its succession to grassland, shrub and forest. This strategy has met with mixed success and is not yet underpinned by well-developed plans to repay landowners for rational and sustainable use of land resources. This must be informed by science that quantifies current and potential ecosystem service delivery. There is significant potential for our research on the response, resilience and recovery of the karst critical zone to perturbation to inform improved land management strategies that will meet these demands, leading in turn to improved delivery of ecosystem services to the communities in this region and higher environmental quality, addressing poverty and the welfare of the population through development of long-term sustainable economic development.
more_vert assignment_turned_in Project2016 - 2019Partners:University of Manchester, UCM, INRIA (Rennes), University of Salford, INSA de Lyon +7 partnersUniversity of Manchester,UCM,INRIA (Rennes),University of Salford,INSA de Lyon,Institute Curie,Curie Institute,University of California, Merced,University of California System,The University of Manchester,INSA de Lyon,INRA-RennesFunder: UK Research and Innovation Project Code: EP/N018060/1Funder Contribution: 371,157 GBPTransport of all kinds of components within the cell - from vesicles along the cytoskeleton through to transcription factors along DNA - is fundamental to cell function and health. Neurons are particularly susceptible to small changes in vesicle transport, which underlie motor neuron disease and may also contribute to neuronal degeneration seen in Alzheimer's disease and during ageing. Despite experimental facts that intracellular transport is heterogeneous and non-Markovian with subdiffusive and superdiffusive regimes most mathematical models for vesicles trafficking are Markovian and homogeneous. The main challenge for our Manchester interdisciplinary team is to obtain new non-Markovian models of heterogeneous intracellular transport supported by experiments. These models will provide a tool set for analysing transport processes in a much more realistic way, opening the way for greatly improved analysis and ultimately understanding of these highly complex cellular behaviours. This will allow other researchers to formulate and test new hypotheses. In the long term, therefore, non-Markovian models have the potential to lead to insight into neurological diseases, ageing and other processes that involve intracellular transport such as bacterial and viral infection. Such knowledge will be important for developing new treatments. Our project combines three different approaches: mathematical modelling, numerical modelling and experimental validation, which complement each other. This strategy will provide multidisciplinary study of the intracellular transport problem and ensure maximum impact across and within several disciplines. Our project will allow applied mathematicians (PI and RA), cell biologists and biophysicists (Co-Is and Project Partners) to collaborate thus making significant advances in intracellular transport research and support a cross-disciplinary dissemination.
more_vert