
Craftsman Tools (United Kingdom)
Craftsman Tools (United Kingdom)
2 Projects, page 1 of 1
assignment_turned_in Project2011 - 2018Partners:University of Sheffield, Technicut, University of Sheffield, Sandvik (United Kingdom), Boeing Co +19 partnersUniversity of Sheffield,Technicut,University of Sheffield,Sandvik (United Kingdom),Boeing Co,Rolls-Royce (United Kingdom),Sandvik Coromant UK Ltd,Technicut,Titanium Metals Corporation (United Kingdom),Boeing Co,Craftsman Tools Limited,BAE Systems (Sweden),Houghton PLC,Mettis Aerospace,Craftsman Tools (United Kingdom),Mettis Aerospace,MESSIER-DOWTY LIMITED,Safran (United Kingdom),Houghton PLC,TIMET UK LIMITED,Boeing (United States),[no title available],BAE Systems (United Kingdom),Rolls-Royce Plc (UK)Funder: UK Research and Innovation Project Code: EP/I01800X/1Funder Contribution: 1,200,000 GBPThe proposed Industrial Doctorate Centre aims to provide Research Engineers (Engineering Doctorates) with skills and expertise at the forefront of knowledge in machining science. These individuals will enable UK industry to develop and maintain a world-leading capability in high value manufacturing sectors that involve machining processes. Furthermore the unique training experience that is provided will enable the Research Engineers to foster a stronger collaboration between the UK's fundamental engineering science research, and the manufacturing engineering community.Machining, in particular metal removal processes, are sometimes perceived as a 'traditional' manufacturing process that have been evolving for many decades and rely upon mature technology. However, this view is short-sighted as it fails to consider the significant developments in engineering science that have taken place over the past few decades and the impact that they can make to step-changes in machining performance. In almost every sphere of engineering science - from nonlinear dynamics to electrical machines and tribology - there are recent significant developments that are of direct relevance to machining applications, which could contribute further step changes in productivity and profitability. A failure to successfully translate these technology developments into machining applications would hinder the future competitiveness of the UK manufacturing sector.The proposed IDC will address this central vision by combining the world class research in the Faculty of Engineering at the University of Sheffield, with the well proven and unique industry-facing activities at the University of Sheffield Advanced Manufacturing Research Centre with Boeing (AMRC). The expertise of the proposal investigators who form the supervisory pool for the IDC can be applied to a wide spectrum of research problems in the field of machining science. Examples include: Machine tool designCutting tool geometryTool and work-piece characterisationStandard features machiningAdaptive control of cutting processesMetal cutting tribologyCoatings technologyMachine and machining dynamicsWork-holding dynamicsElectrical machines and drivesMachine visionStress analysis of machining Fluid mechanics of coolantsDigital control systems The core engineering science behind these machining-focussed issues (tribology, dynamics, experimental mechanics, control) are all areas where the faculty of engineering has demonstrated world leading or internationally excellent research activity. Meanwhile, the AMRC's track record for industrial collaboration allows this research to be tailored and applied to the needs of manufacturing industry. An IDC provides a unique opportunity for the University of Sheffield to offer industrially-focussed research training at an Engineering Doctorate level. In particular, the IDC will have, from its outset, the most comprehensive network of companies involved in all aspects of machining worldwide via the existing AMRC membership.The proposed IDC complements existing UK training centres, where there is no existing capability that specifically focuses on training manufacturing engineers on advanced aspects of machining. The IDC would align fully with the University's strategic aim to foster research collaborations across the Engineering disciplines, following the recent implementation of a Faculty based management system.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::43df9e1eec25eed3432a3f12c1dc3144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::43df9e1eec25eed3432a3f12c1dc3144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2031Partners:Colchester Machine Tool Solutions, British Standards Institution, Kelvin Nanotechnology (United Kingdom), Centre for Process Innovation CPI (UK), Compound Semiconductor Centre (United Kingdom) +37 partnersColchester Machine Tool Solutions,British Standards Institution,Kelvin Nanotechnology (United Kingdom),Centre for Process Innovation CPI (UK),Compound Semiconductor Centre (United Kingdom),Machine Tool Technologies Ltd,Siemens plc (UK),Halifax Numerical Controls Ltd,Polytec Ltd (UK),Excelitas Technologies (United Kingdom),Industrial Technology Research Institute,Durham University,PragmatIC (United Kingdom),Opsydia Ltd,Meta Materials Inc (UK),Sartorius Corporate GmbH,Oxford Lasers (United Kingdom),Qinetiq (United Kingdom),Renishaw plc (UK),Fives Landis Ltd,Taylor Hobson Ltd,University of Bath,HOLDSON LIMITED,University of Huddersfield,National Institute of Standards and Tech,Physikalisch-Technische Bundesanstalt,Cummins Turbo Technologies,Holtex Ltd,Nanyang Technological University,STFC - LABORATORIES,Royal Institute of Technology KTH Sweden,OpTek Systems (United Kingdom),University of Warwick,UK Metamaterial Network,University of Nottingham,euspen,Wayland Additive Ltd,Manufacturing Technologies Association,The National Robotarium,Edwards Vacuum,Singapore Institute of Manufacturing Technology,Craftsman Tools (United Kingdom)Funder: UK Research and Innovation Project Code: EP/Z53285X/1Funder Contribution: 11,857,700 GBPThe project aims to create a new Hub that will act as a national gateway for Advanced Metrology, engaging with UK industry to co-create and co-deliver frontier and innovative research and technologies, and with policy makers and scientific leaders, to drive future UK manufacturing excellence with a clear emphasis on sustainability. The Hub will have environmental and economic sustainability embedded throughout its programme, both in terms of prioritising industry challenges that the research will address, and within the operational delivery. One of the largest challenges in improving sustainability in manufacturing is the availability of the actionable information that is essential to both improve existing processes to reduce waste, and to enable new processes and methods that significantly enhance resource efficiency through reduced energy usage, material reuse and recycling, and reduced transportation (as a result of supply-chain efficiency). By delivering a future where pervasive metrology systems sense, monitor and control manufacturing systems to self-optimise, we will realise the connected and autonomous systems critical for achieving net zero. Delivering these advances requires the development of manufacturing systems that cannot be realised without a new integrated paradigm in metrology, embracing ultra-fast and compact sensors, distributed artificial intelligence (AI) technologies, and autonomous prognostics control systems far beyond the current state-of-the-art. Hence, the Hub's research programme will be structured around three underpinning research themes to address three Key Research Objectives: Create and apply new sensor technologies incorporating nanophotonics/quantum sensing principles combined with photonic edge computing to realise high-precision ultra-fast, ultra-compact, and low-cost sensors/instruments within smart manufacturing processes and systems. Create and apply new resilient and interpretable metrology aimed at capturing actionable information for sustainable manufacturing. Unify whole system autonomous control for sustainability in manufacturing machinery systems, which optimises process, energy use and resource efficiency in complex systems at the design state and through life. When combined, these objectives will deliver universal 'measurement/analysis/control' solutions for early adoption to address sustainable manufacturing challenges. Five priority areas have been identified to demonstrate new metrology technologies and methods; sustainable and connected machinery, zero carbon transport, clean energy systems, semiconductors, and manufacturing reuse. The programme will develop and demonstrate new metrology technologies and methods with clear applications in these sectors. This will be achieved working closely with metrology equipment/software/service providers, manufacturing systems providers, and with manufacturing end-users, supported closely by partners across the UK Catapult network and national and international standardisation bodies. The Hub comprises a substantial consortium, led by the Centre for Precision Technologies at Huddersfield. Initial research spokes will be based at Heriot-Watt, Oxford, Queens (Belfast) and Southampton universities, with Innovation Spokes at The Manufacturing Technologies Centre (MTC) and the Advanced Manufacturing Research Centre (AMRC), and a hybrid Research/Innovation Spoke at the National Physical Laboratory (NPL). Over 25 industrial partners were involved in co-creating the Hub and will be working with the research team to support, delivery and accelerate commercialisation of research outcomes via sponsored research projects, knowledge exchange, technology transfer (IP licensing and spin-out), and training/skills development.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0fa6094ba6571532a5e4ff15b3c8d80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0fa6094ba6571532a5e4ff15b3c8d80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu