Powered by OpenAIRE graph
Found an issue? Give us feedback

Cambridge Immunosensors Ltd

Cambridge Immunosensors Ltd

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/K031953/1
    Funder Contribution: 11,057,900 GBP

    The emergence and re-emergence of infectious diseases is one of the greatest threats to human health. By their very nature, outbreaks of infectious disease can spread rapidly, causing enormous losses to health and livelihood. For example, an estimated 35-million people are HIV-infected, antibiotic resistant pathogens such as MRSA are a major global public health problem and pandemic influenza is rated as the greatest national risk on the UK government risk register (Cabinet Office 'National Risk Register for Civil Emergencies 2012 Edition'). Early diagnosis plays a vital role in the treatment, care and prevention of infectious diseases. However worldwide, many infections remain undiagnosed and untreated or are diagnosed at the late stage due to poor diagnostic tools, resulting in on-going transmission of serious infections or delay in the identification of emerging threats, leading to major human and economic consequences for millions of people. Our vision is to establish an EPSRC Interdisciplinary Research Centre to create a new generation of early-warning sensing systems to diagnose, monitor & prevent the spread of infectious diseases. This large scale collaboration will bring together scientists, engineers and computer scientists from University College London, Imperial College, London School of Hygiene and Tropical Medicine and the University of Newcastle together with NHS stakeholders, the Health Protection Agency and industry partners. Working across and beyond traditional research boundaries, the IRC will pioneer innovative nano-enabled mobile diagnostic tests which can be used in GP surgeries, community settings and developing countries, linked to smart digital-surveillance systems which search for information on the web to detect early indicators of diseases. The tremendous expansion in mobile phone technology with an estimated 6 billion users worldwide, provides new opportunities for point-of-care diagnostics with inbuilt capacity to securely transmit results to public healthcare systems. The challenge is to create robust multimarker sensor platforms that can diagnose early infections with high sensitivity and specificity. Our strategy will seamlessly integrate the scientific excellence underpinning recent breakthroughs by our team in diverse areas of biomarker discovery, capture coatings, nanoparticles, nanopatterning, sensor systems, wireless connectivity, data mining and health economic analysis of diagnostics. Moreover we will explore innovative new strategies to search for early indicators of infection (herein we coin the phrase "e-markers") by searching through millions of web-accessible information sources including Google, Facebook and Twitter to identify outbreaks even from people who do not attend clinics or from geographical regions that are invisible to traditional public health efforts. By providing doctors, community workers and public health organisations with real-time, geographically-linked information about emerging infections which will be visualised on a "dashboard" display, we will support more rapid, stratified, integrated evidence-based interventions, benefitting individuals and populations. Our disruptive early warning sensing capabilities will bring major human and economic benefits to the NHS and global healthcare systems. The ultimate beneficiaries will be patients since early diagnosis will empower them to gain faster access to better treatments, helping to reduce suffering and risk of death. Society will benefit by preventing the onwards spread of infection by people who are unaware of their infection and preserve the effectiveness of precious antimicrobial medicines for future generations. The NHS and healthcare systems will benefit by simplifying patient pathways allowing tests and results to be given in a single visit and so provide a more cost-effective solution of community based care. Our technologies will also provide new commercial opportunities for British industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K021966/1
    Funder Contribution: 3,403,310 GBP

    We propose to create the world's first broad spectrum sensor technology - the Multi-Corder. We will do this by exploiting and advancing leading-edge microelectronic engineering. The world of electronics is dominated by complementary metal oxide semiconductor (CMOS) technology. CMOS has made modern computing and communications possible and has also made an enormous impact on sensing technology such as the digital camera chip. Most recently CMOS has enable the development of the personal genome machine - a next generation sequencing system. We propose to create technology to sense the personal metabolome. This is important since where the genome may indicate an individual's propensity towards a disease, the metabalome is an immediate measurement of body function, hence provides a means of diagnose. Not all possible afflictions are measurable using the metabalome. Using the same fundamental technology we also propose to detect microbial infectious agents. Bacterial affliction already in the body, or in the environment (e.g. a hospital ward) will be targetted, alleviating major problems such as hospital acquired infection. Further beneficiaries are in point of use diagnostic tools and highly portable systems capable of use in the developing world where there is limited infrastructural support. We also foresee yet more ambitious outcomes from the research, and we expect to made progress towards their realisation. We envisage that once a full measurement and analysis of a patient or a contaminated area is achieved, the Multi-Corder technology will underpin new methods of chemical synthesis for drugs. We will demonstrate the use of the technology for direct, high-speed, visualisation of chemical activity, and the means by which the data can be used to control the chemical process required for synthesis. The targets that we will address will take advantage of the ability of microelectronics to make many (millions if needs be) of devices on a single chip, or to integrate diverse technologies together. The core semiconductor technology will be augmented by chemical, lithographic and bio-technologies in order to build complex functions. Our approach is based on a combination of established track record, new insights, and emergent technologies for which we have established trial feasibility. Using our current knowledge as a springboard, we will exploit the flexibility and collaborative framework that a Programme Grant will afford us to create an exciting new technology.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.