Powered by OpenAIRE graph
Found an issue? Give us feedback

WU

WAGENINGEN UNIVERSITY
Country: Netherlands
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
778 Projects, page 1 of 156
  • Funder: European Commission Project Code: 282910
    more_vert
  • Funder: European Commission Project Code: 236132
    more_vert
  • Funder: European Commission Project Code: 101167768
    Funder Contribution: 3,142,140 EUR

    While outbreaks of highly pathogenic avian influenza viruses (HPAIV) in Europe used to be rare and geographically contained, the situation has dramatically changed in the last few years with thousands of outbreaks reported in domestic poultry and wild birds. Despite being an intensive field of research, many unknowns remain as we are still struggling to predict HPAIV emergence, avoid viral spread and limit the socio-economic impact entailed predominantly by control measures. Vaccination of domestic poultry against avian influenza, is now being given full consideration, as it is becoming clear that traditional prevention and control approaches alone will not curb the accelerating pace of occurrence of devastating HPAIV epidemics. On 1 October 2023, France became the first EU country to implement a nation-wide vaccination campaign in ducks. However, vaccinating domestic poultry does not come without important challenges. VIVACE therefore aims at putting together a doctoral network to contribute to fully integrate poultry vaccination approaches into efficient management strategies for HPAIV. We will do so by unravelling the impact current and upcoming EU vaccination policies will have on avian influenza virus evolution, surveillance and control strategies and societal burden of HPAI. This will be done through a combination of disciplines from life sciences, epidemiology, computer sciences and social and behavioural sciences. The training program proposed here includes scientific and transferrable skill sessions, builds on the integrated added values of complementing expertise (virology, immunology, modelling, spatial and molecular epidemiology, social psychology, economics and policy), and full access to state-of-the-art technologies in excellent environments. The consortium gathers 15 universities or research institutes and 5 private companies, securing both inter-sectoriality and wide geographic distribution with tailored epidemiological and vaccination contexts.

    more_vert
  • Funder: European Commission Project Code: 101059632
    Overall Budget: 10,347,900 EURFunder Contribution: 10,272,900 EUR

    Accelerating the transition from animal-based to alternative dietary proteins – the dietary shift – is key to reducing the footprint of our food system in terms of greenhouse gas emissions (GHG), energy, water and land use, and other relevant environmental impacts, and for improving the health and well-being of people, animals and the planet. GIANT LEAPS delivers the strategic innovations, methodologies, and open-access datasets to speed up this dietary shift, in line with the Farm-to-Fork strategy and contributing to the Green Deal target of reaching climate neutrality by 2050. Achieving the dietary shift in practice is inherently complex due to the diverse set of actors involved and further hindered by major knowledge gaps, scattered across the various alternative protein sources and the domains of health (safety, allergenicity and digestibility), environment (GHGs and other environmental and climate impacts, biodiversity, circularity), and/or barriers to adoption (technological, sensory, and consumer acceptance). The GIANT LEAPS consortium consists of the key actors and spans all expertise to address relevant knowledge gaps and proactively engages to arrive at optimized future diets based on alternative proteins that are broadly accepted across stakeholder groups. In order to deliver required insights for short-, mid- and long-term decision making and impact, GIANT LEAPS protein sources have been selected for either targeted or full assessment based on their current level of specification. The innovations and improved methods combined with accessible and comprehensive information, generated for a wide collection of alternative proteins, will enable policymakers to prioritise changes in the food system towards the dietary shift based on desired impact, value chain actors to make strategic scientific, business and investment choices, and the general public to make more sustainable and healthy dietary choices.

    more_vert
  • Funder: European Commission Project Code: 682782
    Overall Budget: 2,000,000 EURFunder Contribution: 2,000,000 EUR

    The microscopic mechanisms that lead to mechanical failure of soft polymer materials are still poorly understood. The main reason for this is a lack of experimental tools to prepare well-controlled model systems and to observe the failure process in real time at the microscopic scale. Here, I propose to fill this gap by taking a multidisciplinary approach that combines innovative chemical tools with state-of-the art physical experiments and modelling. Previous work in my group has led to the development of polymer networks with extremely well-controlled architecture and bond strength, and of various tools to study their structure and mechanics. Here, I will take advantage of this expertise to systematically unravel the microscopic physics of failure of polymer networks. To visualize how the failure process proceeds, we will make use of recently developed mechanosensors, molecules that change colour in response to a force or that emit light when they break. These chemical tools will allow us to map in real time the spatial distribution of both strains and bond rupture events. Together with computer simulations carried out in parallel, this will give us unprecedented insight in the microscopic processes that occur during failure of the material, from the very first bonds that rupture, to the gradual accumulation of damage, all the way to macroscopic failure. We will use this to address the following unresolved questions about failure of polymer networks: 1. What is the microscopic mechanism that leads to delayed failure of polymer networks at subcritical loads? 2. How does the initiation of failure depend on the material's heterogeneity? 3. How does failure occur in a network with transient (viscoelastic) bonds? The project will not only provide detailed insight in the physics of failure of polymer networks, but it will also shed light on fracture physics in general. Finally, it will help material scientists to design new materials with superior properties.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.