Powered by OpenAIRE graph
Found an issue? Give us feedback

GeoPRISMS

Country: United States
2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/M000427/1
    Funder Contribution: 1,343,240 GBP

    We have brought together a consortium of UK investigators and international partners with the key objective of providing a new process based understanding of volatile element (e.g. H2O, C, S, noble gases and halogens) fluxes into the deep mantle at subduction zones and out of the mantle at mid ocean ridges and ocean island settings. The mantle is by many orders of magnitude the largest silicate reservoir for carbon, nitrogen and sulphur on Earth and the input and output of volatiles (e.g., H2O, C, N, S, P, and halogens) at plate boundaries provides long-term controls on the climate and the biosphere. Nevertheless, our understanding of the deep-Earth volatile cycle is crude. In part because we have a very poor understanding of the relative contribution of recycled to primordial volatiles in the mantle system and how this might vary in different mantle reservoirs. In part this is because volatile elements are extensively lost during the eruptive process from many sample types making it hard to identify the controlling processes necessary to develop coherent models. To address our objective the consortium combines several advances in new sample resources and analytical tools: i) The recognition that rapidly quenched melt inclusions (MIs) within erupted material often preserve mantle-source volatile compositions; ii) The ability to determine sulphur and boron isotopes in addition to major volatiles in the MIs; iii) The discovery that boron isotopes can track the extent of volatile loss to the surface from subducting slabs and preserve this signal in the deeper mantle; iv) The innovations in noble gas isotope determination that allow us to resolve recycled volatiles from those trapped during accretion and provide links to halogens, H2O and C; v) The development of non-traditional stable isotopes such as Fe, Cu and Se to identify system oxidation state (a key variable in understanding sulphur) and chalcophile trace element determinations; vi) The advances in computing power and techniques that allow better representation of mantle-like systems. By coordinating the combined consortium expertise and analytical resources on the same sample suites in two thermally contrasting subduction regimes (Kamchatka (cool) and Southern Chile (hot)) we plan to investigate how both the processes and thermal setting control the efficiency and geochemical character (isotopic composition and relative abundance to other volatiles) of volatile subduction into the deep mantle. This allows us to take into consideration changes in subduction temperature as the Earth cools in the development of flux models that run for the age of the Earth. At mid ocean ridges and ocean island settings with different geochemical provenance (e.g. HIMU, EMI, EMII, FOZO) we will determine the proportion and character of volatile elements that have been recycled compared to those that were incorporated into the mantle during its formation (primitive volatiles). This is an essential component in building our understanding of the volatile flux into the mantle required to support the signals in the mantle today. New experimental partitioning developed within the consortium and our ability to track oxidation state will allow us to make a step change in understanding the sulphur cycle - barely understood to date but critical in understanding climate and commercial mineral deposit formation. Numerical simulations of mantle transport for suites of geochemical elements, iterating the geophysical parameters to approach matches for the geochemical observables, will allow us to identify the key geophysical processes in subduction zones and during whole mantle convection that control the geochemical distribution of subducted vs. primordial volatiles in the mantle. Together, these will lead to a significant advance in reconstructing the deep Earth volatile fluxes over Earth history - a grand science challenge.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/K010824/1
    Funder Contribution: 322,346 GBP

    The Earth is unique in our solar system in having abundant liquid water, plate tectonics and life. These properties are not unconnected; The evolution of life has depended heavily on water, and water is pumped around the planet by the plate tectonic cycle. Plate tectonics in turn, and its capacity to generate the very continents on which we live, also depends on the existence of water. Subduction zones are the most important "valve" in the plate tectonic system. They form where tectonic plates sink back into the mantle. Here water, along with other volatiles such as carbon dioxide and sulphur, are returned to the deep interior. However, the return is not wholesale. As the sinking plate is subjected to heat and pressure, a large fraction of the incoming volatiles is "sweated off" and added to the overlying mantle where it causes melting. These melts feed volcanoes at subduction zones which are characteristically dangerously explosive. When considered with the earthquakes triggered by the plates scraping past each other and the consequent tsunamis and landslides, it is clear that subduction zones are the most hazardous places on Earth. Yet, these regions also have benefits: the cocktail of fluids travelling with magmas at subduction zones is responsible for transporting and emplacing valuable metal deposits into the crust, and the fine ash distributed by the explosive volcanoes produces nutrient-rich, fertile soils. The importance of cycling volatiles through subduction zones is self-evident. However we still don't really know how it works and what the budgets are of volatiles delivered to the subduction zone, versus those recycled into the lithosphere, hydrosphere and atmosphere compared with those sequestered back into the deep mantle. We propose an innovative multidisciplinary experiment to track volatiles at a subduction zone. Questions to be answered include: How do volatiles influence the types and amounts of magmas generated? How do they control where volcanoes, such as Mt Pinatubo and Montserrat are located and how explosive they are? How do volatiles dictate where ore deposits are formed? How do volatiles mediate the seismogenic behaviour of subduction zones - whether there are large "megathrust" earthquakes like Japan and Sumatra or whether slip is less violent? Our focus area is the Lesser Antilles Arc, which is a special case, because it is one of only two Atlantic subduction zones. Plate formation processes at the slowly-spreading mid-Atlantic ridge produce a much more pervasively hydrated plate than those in the extensively studied Pacific. Furthermore, a laterally varying capacity to carry water in the plate and sediments subducting below the Antillean arc are a likely culprit for the arc's highly variable style and intensity of seismic and volcanic activity. By mapping structural differences along the arc we will be able to pinpoint the effects of variable water input. We plan to use novel seismic approaches complemented by geochemical analyses and integrated using numerical models to identify and quantify where volatiles are in the downgoing plate, where they are released at depth, and how they are transported from the subducting plate through the mantle wedge to the arc. We will use a unique suite of rocks from deep in the crust which have been carried up in volcanoes to help us understand how magmas evolve, and what allows them to concentrate ore metals. Mapped water pathways will be compared with seismic and volcanic activity, as well as with those inferred at other subduction zones. This large research project will be "bookended' on the one hand by an enormous amount of resource; data, samples, expertise and results from previous studies that will provide excellent value for money, and on the other hand a special focus on the societal benefits; informing natural hazard planning, and a better appreciation of how and where economic deposits form.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.