Powered by OpenAIRE graph
Found an issue? Give us feedback

Morgan Advanced Materials (United Kingdom)

Morgan Advanced Materials (United Kingdom)

21 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/I005099/1
    Funder Contribution: 104,335 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I005145/1
    Funder Contribution: 427,771 GBP

    Electrochemistry is concerned with the transfer of charge between a solid (the electrode) and a molecule, which is usually in solution. The properties of the electrode itself may be important, particularly in the case of carbon surfaces, which is especially relevant in view of their widespread applications as electrode materials. Graphitic forms of carbon are plentiful, non-toxic and highly conductive, and have thus found uses as disposable electrode materials in electrochemical glucose sensing, or as continually-used substrates in energy storage and generation (e.g. lithium ion batteries, super-capacitors and fuel cells). In each of these roles, the interfacial properties, and particularly the charge transfer kinetics, of the carbon are essential. Such commercial electrochemical applications of carbon have traditionally used screen-printed or activated carbons, formed from micron-scale amorphous or graphitic particles, often mixed with a polymeric binder. There has been enormous interest in the last decade or so in the use of nano-scale carbon materials, both from the viewpoint of fundamental understanding of their properties and their technological exploitation. Carbon nanotubes (CNTs) consist of rolled up 1-dimensional sheets of carbon atoms. Recently 2-dimensional carbon in the form of single graphite sheets, known as graphene, has been isolated. These analogues of graphite have attracted much interest because of their unique electronic properties, not least the exceptionally high carrier mobility, and atomically well-defined structure. These properties have stimulated enormous interest in theoretical and experimental studies of charge TRANSPORT within CNTs and graphene. An equally interesting area, given the myriad of electrochemical applications of carbon (see above) is to understand the case of interfacial charge TRANSFER from the low dimensional carbon to a redox-active molecule. In particular, the structure of mono- and bi-layer graphene provides an ideal model system with which fundamental questions about charge transfer to/from carbons can be answered. The approach we will pursue exploits the lead position held by the UK generally, and Manchester in particular, established by the experimental isolation of high purity graphene by Novoselov et al in 2004 . We will use graphene samples defined by lithographically etched windows to study the interfacial charge transfer characteristics of the material as a function of structure. Experimental work will be supported with state-of-the-art computation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L024780/1
    Funder Contribution: 358,389 GBP

    Various RCUK funded projects at Loughborough University over the years have delivered significant foreground intellectual property and technology know-how related to the fabrication of nanostructured materials with outstanding properties, surpassing some of the commercial counterparts, relevant to the energy, electronic security and in particular healthcare sectors. Specifically it has been demonstrated that the hydrothermal ageing (HTA) resistance of zirconia based ceramics can be enhanced significantly by retaining a nano grain size below 180 nm even at low density components. This is highly relevant to the ~$5B hip replacement market where concerns about the toxicity / wear debris in metal and polymer components renders all-ceramic solutions increasingly attractive. HTA degradation (the unwanted conversion of tetragonal zirconia to a weaker monoclinic form in an aqueous environment) is the Achilles-heel for the use of zirconia ceramics in biomedical sector and was the reason behind the well-publicised failure of zirconia hip replacements around 2000. Thus, when HTA is countered, new opportunities open up. The proposed technology (involving novel nano-suspension control, granulation and then microwave assisted hybrid heating as well as flash sintering regimes; zirconia toughened alumina and zirconia ceramics will be considered) aims to deliver very small zirconia grain sizes that will both assist current compliance (e.g. ISO 13356, ISO 633-3) and open up novel all-ceramic hip replacements via multi-fold enhancement in HTA-resistance of porous and dense graded zirconia based structures. The methodology will be applicable to ceramic-metal graded implant structures also with suitable modifications. The retention of nano-size throughout all stages of ceramic component production is critical to delivering the target end properties that will assist the health and quality of life in a growing ageing population. This will be achieved via the development of implant structures (applicable for hip/knee prosthesis, finger joints and jaw & skull repairs) that deliver improved mobility over a longer time period thus reducing reliance on repeat surgery and in some cases confinement to use of wheelchair.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E035671/1
    Funder Contribution: 117,780 GBP

    Enormous numbers of energetic neutrons are released when helium is produced by the fusion of deuterium and tritium at high temperatures, as in our Sun. This promises to solve the World's long-term energy needs if a controlled version can be carried out on Earth. JET at Culham has been one of the leading experimental reactors for magnetically confined fusion using gaseous plasmas, and has been an important step towards designing the international thermonuclear experimental reactor, ITER. UK fusion technology is now on the fast track and will demand a new generation of materials for commercial reactor construction. The selection of materials for ITER has been based on those available some years ago, but there are trade-offs in deciding whether to use high temperature metals that are resistant to plasma erosion but liable to be damaged by radiation and also contaminate the pure plasma, or to use light elements that are toxic (beryllium) or more easily eroded and may absorb significant amounts of tritium fuel (graphite). We want to establish a materials capability for the next generation, and in particular to exploit our capability in diamond films as a route to designer carbons as plasma-facing wall materials. This proposal intends to coat carbon tiles with diamond on a large scale, in order to lower the erosion rates, dust formation, and tritium absorption, by using the unique properties of diamond, namely high temperature stability, radiation resistance, high atomic density and unsurpassed chemical stability in the presence of hydrogen plasmas. This solution enables the preferred use of low atomic number plasma-facing materials. Computational modelling of carbon structures will complement the experimental programme in optimising the chemical and physical structure of a composite functional material exposed to radiation. If successful, this approach would enable reactors to operate for longer periods before component replacements and without compromising the tritium inventory.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R029873/1
    Funder Contribution: 194,459 GBP

    Ceramic materials are used in a wide range of applications including motion sensors, for energy storage in electric vehicles, dental replacement, hip and knee implants, cutting blades, and body and vehicle armour. They are exceptionally durable, even at high temperatures and in corrosive environments, and can be reused or recycled at the end of their life. However the high cost of manufacturing is a major barrier to the use of ceramic materials. Producing a dense strong ceramic material with minimal porosity requires heating to very high temperatures well over 1000 deg.C typically for many hours. Recently scientists have discovered that the temperature and duration of the ceramic densification process (sintering) can be significantly reduced by passing an electric field through the ceramic during the heating process. This "flash sintering" process, so-called because the material densifies extremely rapidly within a few seconds and often with the simultaneous emission of light, has potential to significantly reduce energy use in industrial-scale ceramic manufacturing and reduce emissions of greenhouse gases from the process by up to 40%. The flash sintering technique may revolutionise the ceramic manufacturing industry by reducing the cost and environmental impact of producing ceramic materials. In this research project a detailed investigation of the flash sintering method will be undertaken to establish the viability of this technique for use with a wide range of ceramic materials and particularly to understand the underlying mechanisms which cause the flash sintering effect. A flexible flash sintering facility will be established which can be used to flash sinter a wide range of ceramic materials. Composite materials with varying electrical conductivity will be flash sintered under different conditions. The results will used to understand the effect of both the material properties and the variables involved in the process (e.g. electric field strength, current, voltage, and temperature) on the observed flash sintering behaviour. Materials will be characterised by measuring their density, imaging using scanning electron microscopy and mapping the chemical composition, and using X-ray diffraction to determine any changes to the phase composition of the materials caused by the flash sintering process. New insights will be gained by flash sintering for the first time a structure made of layers of ceramic composite materials graded by composition and examining how the flash sintering behaviour changes compared to samples containing each individual composition. The results of this project will be used by our industrial project partners Lucideon and Morgan Advanced Materials in the industrial development and application of flash sintering technology.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.