Powered by OpenAIRE graph
Found an issue? Give us feedback

Pilkington Technology

Pilkington Technology

12 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/F056648/2

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E009697/1
    Funder Contribution: 126,023 GBP

    Magnetic induction tomography (MIT) is a technique for imaging the electrical conductivity in a cross-section of an object. MIT applies a magnetic field from a current-carrying coil to induce eddy currents in the object which are then sensed by an array of other coils. From these signals, an image of conductivity is reconstructed. This proposal brings together two of the world's leading groups in MIT, from Manchester and South Wales, with a programme designed to address the fundamental theoretical and practical problems of making MIT operate reliably with low-conductivity materials (< 10 S/m). The success of this research could produce a major step forward in the application of MIT, with new opportunities in imaging biological tissues and industrial processes. Three specific application areas will be researched: one biomedical, for imaging acute cerebral stroke, one in glass production, for monitoring process parameters to ensure product quality, and one in the oil industry for imaging the process water in an oil/gas pipeline.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E009158/1
    Funder Contribution: 245,817 GBP

    Magnetic induction tomography (MIT) is a technique for imaging the electrical conductivity in a cross-section of an object. MIT applies a magnetic field from a current-carrying coil to induce eddy currents in the object which are then sensed by an array of other coils. From these signals, an image of conductivity is reconstructed. This proposal brings together two of the world's leading groups in MIT, from Manchester and South Wales, with a programme designed to address the fundamental theoretical and practical problems of making MIT operate reliably with low-conductivity materials (< 10 S/m). The success of this research could produce a major step forward in the application of MIT, with new opportunities in imaging biological tissues and industrial processes. Three specific application areas will be researched: one biomedical, for imaging acute cerebral stroke, one in glass production, for monitoring process parameters to ensure product quality, and one in the oil industry for imaging the process water in an oil/gas pipeline.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F056710/1
    Funder Contribution: 1,191,170 GBP

    The development of cheap renewable energy sources is required to reduce the environmental effects associated with the use of conventional fossil fuel based energy sources. Of all the renewable energy technologies, solar energy has the greatest potential as a world power source. For this reason, solar photovoltaic (PV), the direct conversion of sunlight to electricity, is expected to play a significant role in future electricity supply. Here we focus on the development of photovoltaic devices based upon organic semiconducting materials. This project focusses on two issues that are widely recognized as being key for the development of low-cost efficient and stable photovoltaic devices: (i) the development of low cost alternatives to indium tin oxide (ITO) as the transparent conducting electrode and (ii) control of nanomorphology of the donor-acceptor interface. This project will involve the design and synthesis of new electrode materials and the use of molecular self-organization strategies to control the donor-acceptor film morphology at the nanometre length scale to deliver high efficiency organic solar cell that are capable of being scaled up cost effectively. This project will also lead to an improved fundamental understanding of device function. This multidisciplinary project brings together chemists, physicists, materials scientists and engineers with world-leading expertise in metal oxide electrode design, polymer synthesis and manufacturing. This project also involves collaboration with Pilkington Glass, Merck Chemicals and BP Solar.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G036675/1
    Funder Contribution: 7,210,220 GBP

    The Industrial Doctorate Centre in Molecular Modelling and Materials Science (M3S) at University College London (UCL) trains researchers in materials science and simulation of industrially important applications. As structural and physico-chemical processes at the molecular level largely determine the macroscopic properties of any material, quantitative research into this nano-scale behaviour is crucially important to the design and engineering of complex functional materials. The M3S IDC is a highly multi-disciplinary 4-year EngD programme, which works in partnership with a large base of industrial sponsors on a variety of projects ranging from catalysis to thin film technology, electronics, software engineering and bio-physics research. The four main research themes within the Centre are 1) Energy Materials and Catalysis; 2) Information Technology and Software Engineering; 3) Nano-engineering for Smart Materials; and 4) Pharmaceuticals and Bio-medical Engineering. These areas of research align perfectly with EPSRC's mission programmes: Energy, the Digital Economy, and Nanoscience through Engineering to Application. In addition, per definition an industrial doctorate centre is important to EPSRC's priority areas of Securing the Future Supply of People and Towards Better Exploitation. Students at the M3S IDC follow a tailor-made taught programme of specialist technical courses, as well as professionally accredited project management courses and transferable skills training, which ensures that whatever their first degree, on completion all students will have obtained thorough technical and managerial schooling as well as a doctoral research degree. The EngD research is industry-led and of comparable high quality and innovation as the more established PhD research degree. However, as the EngD students spend approximately 70% of their time on site with the industrial sponsor, they also gain first hand experience of the demanding research environment of a successful, competitive industry. Industrial partners who have taken up the opportunity during the first phase of the EngD programme to add an EngD researcher to their R&D teams include Johnson Matthey, Pilkington Glass, Exxon Mobil, Silicon Graphics, Accelrys and STS, while new companies are added to the pool of sponsors each year. Materials research in UCL is particularly well developed, with a thriving Centre for Materials Research and a newly established Materials Chemistry Centre. In addition, the Bloomsbury campus has perhaps the largest concentration of computational materials scientists in the UK, if not the world. Although affiliated to different UCL departments, all computational materials researchers are members of the UCL Materials Simulation Laboratory, which is active in advancing the development of common computational methodologies and encouraging collaborative research between the members. As such, UCL has a large team of well over a hundred research-active academic staff available to supervise research projects, ensuring that all industrial partners will be able to team up with an academic in a relevant research field to form the supervisory team to work with the EngD student. The success of the existing M3S Industrial Doctorate Centre and the obvious potential to widen its research remit and industrial partnerships into new, topical materials science areas, which are at the heart of EPSRC's strategic funding priorities for the near future, has led to this proposal for the funding of 5 annual cohorts of ten EngD students in the new phase of the Centre from 2009.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.