Powered by OpenAIRE graph
Found an issue? Give us feedback

E ON

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/F062052/1
    Funder Contribution: 199,107 GBP

    The water industry is the fourth most energy intensive secotr in the UK and uses approximately 2 -3 % of net UK electricity releasing approximately four million tonnes of green house gas emissions (carbon dioxide equivalent) every year. The industry is making progress to produce more renewable energy from its waste biomass sources. However, only 493 GWh was generated by water utilities in the UK in 2005/06 about 6.4 % of its actual requirements. The government has called for research into potentially more efficient energy generation technologies from biomass which would contribute significantly to the UK's policy objectives of 10% of electricity supply from renewable energy by 2010 and for the reduction of greenhouse gas emissions. Innovative research into low carbon treatment and production and storage and use of biogas in the water sector has the potential to offer step-change benefits to the UK's energy system. This project seeks to secure a paradigm shift in wastewater treatment and biogas application. A pilot scale feasibility study is proposed to examine: (1) the fundamental operation of an anaerobic bioreactor using fortified influent wastewater; and (2) increasing the energy-production capacity of the generated renewable biogas. This approach significantly alters the wastewater treatment flow-sheet by reducing dependence on the energy intensive activated sludge process. The project has the potential for UK energy savings of 0.12 kWh per cubic metre of wastewater treated. Over 1 million cubic metres of wastewater are treated every day which potentially corresponds to savings of 438GWh per year and 188,469 tonnes of carbon dioxide per year. This is approximately equivalent to off setting 122,000 people flying London to New York return. Potentially fortified anaerobic treatment will also yield >10 % more biogas than is currently available from anaerobic digesters. Therefore, it is important to increase its energy production capacity in line with government developments for local energy and increased energy security. Currently biogas is used in combined heat and power in the UK water sector but biogas use in fuel cells, as a transport gas and for gas supply could provide greater flexibility and efficiency with more storage opportunities. However, these applications require biogas to be upgraded. This project seeks to examine in-situ methane enrichment to provide a better economy of scale for upgrading biogas and thereby maximising the overall energy production capacity of wastewater carbon. This project will therefore help to provide the 'scientific advance and industrial innovation to utilise biomass to meet the increasing demands for sustainable products from renewable sources' called for by the government.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E039995/1
    Funder Contribution: 6,313,560 GBP

    Bioenergy is now becoming a commercial reality, ranging from cofiring in power stations, small units for power and/or heat, as well as transport fuels such as biodiesel. This SUPERGEN bioenergy project will continue to deliver the scientific background to the provision and utilisation of bioenergy, as well as innovative concepts for new applications. The research brings together growers, biologists, agronomists, economists, scientists and engineers in a unique multi-disciplinary team that will tackle the challenges associated with the further development of this renewable resource in a sustainable manner. The extended programme examines production and utilisation related factors that affect quality and suitability of a biomass fuel for different end uses, with a particular emphasis on the energy crops, willow and miscanthus, as well as more diverse fuel streams including residues and co-products. The work programme ranges from practical issues associated with fuel handling and preparation, to fundamental studies of genetics, agronomy and chemistry that affect both desirable and undesirable fuel characteristics. In addition, key engineering solutions for the successful development of biomass thermal conversion technologies are sought through (a) an understanding of the basic science in thermal conversion and (b) component and plant engineering issues. These topics are developed further in this renewal proposal through advanced engineering models complemented by experimental studies in a range of combustion, gasification and pyrolysis units.In addition, the scope of the project has been widened in this continuation to consider challenges in fuels and chemicals production from biomass, integrated with energy production in a bio-refinery approach.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F061188/1
    Funder Contribution: 360,581 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F061307/1
    Funder Contribution: 401,556 GBP

    Co-firing biomass with coal at existing power plant is widely adopted as one of the main technologies for reducing CO2 emissions in the UK and the rest of the world. Despite various advances in developing the co-firing technology, a range of technological issues remain to be resolved due to the inherent differences in the physical and combustion properties between biomass and coal. Typical problems associated with co-firing include poor flame stability, low thermal efficiency, and slagging and fouling. This project aims to achieve the optimisation of biomass/coal co-firing processes through a combination of advanced fuel characterisation, integrated measurement and computational modelling. In the area of fuel characterisation, both thermo-gravimetric analysis and automated image analysis techniques in conjunction with conventional fuel analysis methods will be combined to achieve comprehensive characterisation of biomass and biomass/coal blends from a wide range of sources. Because of the physical differences between biomass and coal the fluid dynamics of the biomass/coal/air three-phase flow in the fuel lines feeding the burners is rather complex and very little is known in this area of science. It is proposed in this project to develop an instrumentation technology capable of measuring the basic parameters of the biomass/coal particles in the fuel lines on an on-line continuous basis. The system will allow the monitoring and optimisation of the fuel delivery to the burners. The instrumentation technology combines novel electrostatic sensing and digital imaging principles and embedded system design methodology. The flow parameters to be measured include particle size distribution, velocity and concentration of biomass/coal particles as well as biomass proportion in the blend. It is known that biomass addition and variations in coal diet can have a significant impact on combustion stability and co-firing efficiency. As part of this project, a system incorporating digital imaging devices and solid state optical detectors will be developed for the continuous monitoring of the burner conditions and flame stability under co-firing conditions. Computational modelling provides a powerful supplementary tool to experimental measurement in the studies of three-phase flow and combustion flame characteristics. Computational Fluid Dynamic (CFD) modelling techniques will be applied in this project to investigate the dynamic behaviours of irregular biomass particles and their blends with pulverised coal in the fuel lines and associated combustion characteristics particularly flame stability. CFD modelling techniques will also be applied to study the impact of biomass addition on ash deposition and formation of slagging and fouling. The measurements from the flow metering and flame monitoring systems will be integrated to establish and validate the CFD models. Meanwhile, the modelling results will be used to interpret the practical measurements under a wide range of conditions.The project consortium comprises three academic centres of expertise including Kent, Leeds and Nottingham. Collaborative arrangements with three leading research centres in China have been established in addition to support from power generation organizations in the UK and China. Following the design and implementation of the instrumentation systems and computational modeling work, experimental work will be performed on combustion test rigs in both countries. The instrumentation systems and computational models will then be scaled up for full scale power stations. Demonstration trials will be undertaken to assess the efficacy of the advanced fuel characterisation techniques, the performance and operability of the instrumentation systems, and the validity of the computational models under a range of co-firing conditions. Recommendations for the optimization of co-firing processes at existing power plant and on the design of new plant will be reported.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F060882/1
    Funder Contribution: 88,814 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.