Powered by OpenAIRE graph
Found an issue? Give us feedback

OPTIMAL COMPUTING

Country: Belgium

OPTIMAL COMPUTING

3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 296016
    more_vert
  • Funder: European Commission Project Code: 101096126
    Overall Budget: 16,118,600 EURFunder Contribution: 12,582,300 EUR

    Beyond building-integrated photovoltaics (BIPV), slowly but steadily gaining adoption and settling as a more mature, recognized and reliable technology, the increasing interest of IPV solutions has recently started to expand towards other market segments. A curious gaze at our nearest environment allows identifying endless opportunities in which the implementation of IPV solutions could be addressed, bringing synergies, innovation and added value to important market segments such as infrastructures, transport, agriculture, urban environment, low-power electronic devices, etc. This idyllic approach brings, nevertheless, important challenges in the manufacturing, product development and effective integration of these multifunctional PV devices over final applications due to the fundamentally different specifications coming from each sector, which hinders the offer of a ‘one-fits-all’ technological approach. In addition, customization and flexibility in design is still constrained by existing manufacturing capacity and sophistication degree, which is, as of today, very much oriented towards more standardized manufacturing processes based on traditional PV equipment and processes. In this context, SEAMLESS-PV is conceived to answer this challenge by addressing (1) the development of advanced flexible automated PV equipment manufacturing based on high efficiency c-Si technologies, (2) the upscale of new manufacturing processes presenting key features (e.g. lightness, enhanced integrability) and cost reductions that enable the seamless integration of PV over final applications and (3) the development of a set of IPV products demonstrating cost-competitiveness and compliance with market requirements and expectations. The project will demonstrate this new manufacturing capacity at pilot level and showcase the opportunity for European IPV manufacturers and end-users to unleash the potential of this sector.

    more_vert
  • Funder: European Commission Project Code: 817991
    Overall Budget: 11,434,500 EURFunder Contribution: 8,844,070 EUR

    Building-integrated photovoltaic (BIPV) technology has the potential to significantly contribute to the achievement of the demanding energy efficiency targets set by the EU, however, its market uptake has been hindered in the past years by the difficulties of the industry in providing holistic solutions complying with key demands from decision makers and end-users. In this sense, it is a common perception that a joint industrial effort is needed to conceive and develop highly-efficient and multifunctional energy producing construction materials, in order to provide market opportunities at a world-wide level for the European photovoltaic and construction industry value chains. This market deployment depends critically on the achievement of ambitious targets in terms of significant cost reduction, flexibility of design, high performance, reliability in the long-term, aesthetics, standardization and compliance with legal regulations. Within this context, the main objective of BIPVBOOST project is to bring down the cost of multifunctional building-integrated photovoltaic (BIPV) systems, limiting the overcost with respect to traditional, non-PV, construction solutions and non-integrated PV modules, through an effective implementation of short and medium-term cost reduction roadmaps addressing the whole BIPV value chain and demonstration of the contribution of the technology towards mass realization of nearly Zero Energy Buildings. In order to address these global objectives and maximize the impacts, the project will optimally combine and demonstrate in real operation conditions: (i) a completely flexible and automated BIPV manufacturing and control line, (ii) a large portfolio of multifunctional BIPV products optimally integrated in the building envelope, (iii) process and energy management innovation based on digitalization and (iv) advanced standardization activities supporting the qualification of BIPV systems for a massive implementation in the building skin.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.