
RPOW CONSULTING SL
RPOW CONSULTING SL
4 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2027Partners:KTH, RPOW CONSULTING SL, Wrocław University of Science and Technology, Goa University, ENERIN AS +1 partnersKTH,RPOW CONSULTING SL,Wrocław University of Science and Technology,Goa University,ENERIN AS,Kyoto Group ASFunder: European Commission Project Code: 101147078Overall Budget: 2,446,980 EURFunder Contribution: 2,446,980 EURI-UPS aims to develop and validate a first-of-a-kind (FOAK), cost-effective and reliable high-temperature industrial heat pump fully integrated in a flexible energy system for industrial medium temperature (~400°C) heat decarbonisation. I-UPS validate up to TRL 5 a first-of-a-kind high-temperature heat pump (HTHP), based on Stirling cycles and exploiting a non-toxic, inert, zero ozone depletion potential (ODP) and zero global warming potential (GWP) fluid, able to deliver decarbonized heat up to 400°C. No other commercial alternatives are available achieving this heat delivery temperature at efficiencies higher than 100%. The developed heat pump provides enhanced performance thanks to the optimization of key subcomponents, such as optimized static and dynamic sealing solutions and compact heat exchangers enabled by genetic algorithm based design optimization and additive manufacturing techniques. I-UPS provides also a seamless integration of the developed high temperature heat pump in flexible energy systems including molten salts based thermal energy storage (TES) for on-demand decarbonized industrial heat based on RES electricity. This effective integration will be attained thanks to the design and development of purposely-optimized compact heat exchangers (pressurized gas to molten salts) which will ensure reliable high temperature operation and fast ‘plug-and-play’ installation. The integrated heat pump configuration proposed by I-UPS will enable higher modularity, flexibility, and efficiency for heating decarbonisation also leveraging waste heat recovery and contributing to the circularity of the industrial sector. I-UPS will contribute to heating flexible electrification, permitting a broader penetration of RES and facilitating and maximizing the market penetration of heat pumps in industrial contexts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::d6471c2e54e86c3e35fbbdde5aba46db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::d6471c2e54e86c3e35fbbdde5aba46db&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2027Partners:KTH, RPOW CONSULTING SL, FHG, RINA-C, Sunntics +4 partnersKTH,RPOW CONSULTING SL,FHG,RINA-C,Sunntics,DINEX DEUTSCHLAND GMBH,Cosentino R&D,FERSISOLAR SL,METU THE CENTER FORSOLAR ENERGY RESEARCH AND APPLICATIONSFunder: European Commission Project Code: 101147257Overall Budget: 2,241,600 EURFunder Contribution: 2,241,600 EURFLUWS aims to develop and validate a more flexible, reliable, environmentally friendly and cost-effective thermal energy storage (TES) system futureproofed for next-generation concentrating solar power plants operating at higher temperatures and hybridized with PV, two of the main paths for reaching cost-efficiency of CSP. FLUWS validates up to TRL 5 a novel TES concept that ensures elevated thermal efficiency with minimum environmental impact thanks to on the one hand the upcycling of waste and residual materials from the ceramic industry and the use of air as heat transfer fluid and on the other thanks to building on previous consortium know-how in the development of new cost-effective radial packed-bed TES and materials for high-temperature applications. The new FLUWS TES will enable more flexible and modular CSP systems as it will have embedded electric heaters driven by renewable electricity and will be designed for easier integration with compact gas Brayton cycles, thus facilitating the provision of additional services from CSP to the grid and widening the applications of CSP as a competitive technology for combined heat and power (CHP) in the industrial sector. FLUWS addresses key technological challenges: development of high-temperature solid TES media materials based on upcycling of waste and residual material streams; Production of bricks-shaped TES materials via low energy demanding extrusion processes; Development of high temperature (≥800°C) packed bed TES with embedded electric heaters with enhanced performance and reduced structural challenges facilitating upscaling and commercial uptake; Development of high-temperature TES with minimal environmental impact and maximized circularity along the full value chain; Deployment of comprehensive modelling suites for industry and grid operators to maximize the dispatchability of CSP plants, improving their role in the energy sector and the variety of provided services.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::a5149863740b7b881ef751240cdee2fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::a5149863740b7b881ef751240cdee2fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2027Partners:CARTIF, CERTH, Kyoto Group AS, Goa University, ENOGIA +9 partnersCARTIF,CERTH,Kyoto Group AS,Goa University,ENOGIA,HERON II THERMOILEKTRIKOS STATHMOS VIOTIAS SOCIETE ANONYME,HERON ENERGY S.A.,Research Centre Rez,Polytechnic University of Milan,KTH,EDP CNET,RPOW CONSULTING SL,ALFA LAVAL VICARB SAS,RINA-CFunder: European Commission Project Code: 101136000Overall Budget: 4,701,870 EURFunder Contribution: 4,701,870 EURSCO2OP-TES project aims to develop and validate up to TRL5 in UNIGE-TP lab the next generation of Power-to-heat-to-power (P2H2P) energy storage able to guarantee long duration and large scale energy storage to facilitate bulky RES integration in EU energy systems as well as to enhance fossil based power plants flexibilization and facilitate grid integration of EU industries. SCO2OP-TES promotes indeed a new paradigm where industrial WH (even at low temperature like 150-200°C) can be used not only to produce power via ORC or sCO2 Cycles, but to operate P2H2P storage systems more efficiently and grid flexibly. The consortium is composed by innovative SMEs and acknowledged EU RTOs, motivated to realize the first sCO2 PTES pilot plant in Europe. Leveraging experiences from previous EU Funded projects (SHARP-sCO2, CO2OLHEAT, SOLARSCO2OL etc.) as well as from acknowledged RTOs (UNIGE, CVR, KTH, POLIMI, CERTH, UoB) and industrial partners (EDPP, EDP-NEW, HERON,), SCO2OP-TES the potential of “sCO2 BASED CARNOT BATTERIES” based on innovative Molten Salt TES (KYOTO, RPOW) and sCO2 HEXs (AL) and turbomachinery (ENOGIA, SIT) targeting to assess the potential benefit of valorising local WH to optimize round-trip-efficiency and reduce TES size/CAPEX while optimizing local grid/power plant flexibility needs. Via its pilot and replication campaign (involving further CCGTs in Greece and Portugal), SCO2OP-TES promotes the role of P2H2P as key enabling long duration/large scale energy storage technology to boost RES integration in EU energy systems. PC-TECO will develop and validate key enabling technologies (HEXs, turbomachinery, TES) and modelling approaches (Dynamics, thermoeconomic, grid flexibility potential assessment) to make EU leader in the field of P2H2P solutions, boosting WH Recovery as well as fostering a storage solution based on rotating-machine and therefore more grid flexible and environmentally friendly if compared to battery or power-to-H2 storage solutions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::bc571372e6ced7bd245ee164cd3912b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::bc571372e6ced7bd245ee164cd3912b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2027Partners:Unisa, Polytechnic University of Milan, RPOW CONSULTING SL, FIVES CRYO, University of Seville +11 partnersUnisa,Polytechnic University of Milan,RPOW CONSULTING SL,FIVES CRYO,University of Seville,TRSA,ETN,CiTD AEROPOLIS,EMPRESARIOS AGRUPADOS INTERNACIONA L SA,Siemens Energy,Nuovo Pignone Tecnologie s.r.l.,FADA-CATEC,TUW,ISESP,SOFTINWAY SWITZERLAND LLC,CTUFunder: European Commission Project Code: 101073266Funder Contribution: 3,839,140 EURThe primary objective of this four-year work programme is to undertake cutting edge multidisciplinary research and development to make a step change in understanding of Supercritical CO2 based power generation systems’ technology and its potential to enable a step change in thermal energy power cycles to be a major contributor to achieving the 2050 zero emissions targets while providing specialised training for 15 doctoral researchers to help establish the backbone of an important industry. The technical objectives of this research are: 1- Develop advanced models and design tools that enable the optimal integration of sCO2 power systems components for various thermal energy sources and end use applications 2- Develop accurate prediction tools for the simulation of transient operation of sCO2 power cycles and investigate innovative concepts of control and optimisation of operation 3- Develop innovative methods to enhance aerodynamic and mechanical performance, reliability, and operability of key system components 4- Develop advanced modelling and experimental methods that enable selection and development of materials, coatings and manufacturing techniques To achieve the objectives of this training programme effectively, ISOP proposes four research WPs and requests funding from the EU for 15 Doctoral Candidates for a total of 540 person months who will work on an ambitious plan to advance the sCO2 power cycles technology beyond the state-of-the-art. The project aims to contribute to the EU agenda on European Research Area by training “a new generation of creative, entrepreneurial and innovative early-stage researchers”, who can face future challenges and to “convert knowledge and ideas into products and services for economic and social benefit”. In addition, support to and compliance with the United Nation’s Sustainable Development Goals will be at the heart of the training of the doctoral candidates and the scientific and economic outcomes of this research.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::31521095af742d3ee4de7cc78ab964ad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::31521095af742d3ee4de7cc78ab964ad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu