Powered by OpenAIRE graph
Found an issue? Give us feedback

NIS Ltd

Country: United Kingdom
5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/E009832/1
    Funder Contribution: 204,989 GBP

    Magnetic induction tomography (MIT) is a technique for imaging the electrical conductivity in a cross-section of an object. MIT applies a magnetic field from a current-carrying coil to induce eddy currents in the object which are then sensed by an array of other coils. From these signals, an image of conductivity is reconstructed. This proposal brings together two of the world's leading groups in MIT, from Manchester and South Wales, with a programme designed to address the fundamental theoretical and practical problems of making MIT operate reliably with low-conductivity materials (< 10 S/m). The success of this research could produce a major step forward in the application of MIT, with new opportunities in imaging biological tissues and industrial processes. Three specific application areas will be researched: one biomedical, for imaging acute cerebral stroke, one in glass production, for monitoring process parameters to ensure product quality, and one in the oil industry for imaging the process water in an oil/gas pipeline.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E009697/1
    Funder Contribution: 126,023 GBP

    Magnetic induction tomography (MIT) is a technique for imaging the electrical conductivity in a cross-section of an object. MIT applies a magnetic field from a current-carrying coil to induce eddy currents in the object which are then sensed by an array of other coils. From these signals, an image of conductivity is reconstructed. This proposal brings together two of the world's leading groups in MIT, from Manchester and South Wales, with a programme designed to address the fundamental theoretical and practical problems of making MIT operate reliably with low-conductivity materials (< 10 S/m). The success of this research could produce a major step forward in the application of MIT, with new opportunities in imaging biological tissues and industrial processes. Three specific application areas will be researched: one biomedical, for imaging acute cerebral stroke, one in glass production, for monitoring process parameters to ensure product quality, and one in the oil industry for imaging the process water in an oil/gas pipeline.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/C008022/1
    Funder Contribution: 236,203 GBP

    There is a need for inspection systems that are able to detect explosives (or drugs) hidden in for example luggage. These systems are most efficient if they can inspect the object without having to investigate by hand. e.g. a person does not have to search each piece of luggage or container. Explosives almost universally comprise hydrogen, carbon, nitrogen and oxygen is different ratios. A system that will detect elements like these is based on sending a beam of neutrons into the system. The different elements will emit gamma rays of different energies which are unique to the isotopes concerned. These gamma rays can be measured accurately with a germanium gamma-ray detector and hence the amount of each element determined. This information can then be used to determined the ratios of the four elements and hence whether explosives (or drugs etc.) are present. By using modern technology the germanium detector can also be used to make an image of the object under investigate, similar to an airport baggage scanner. In this case the gamma-rays and scattered neutrons will be detected simultaneously to make a clearer image. By the end of the project we hope to have demonstrated in the laboratory that these ideas are effective and to determine the potential sensitivity.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/C007964/1
    Funder Contribution: 169,231 GBP

    There is a need for inspection systems that are able to detect explosives (or drugs) hidden in for example luggage. These systems are most efficient if they can inspect the object without having to investigate by hand. e.g. a person does not have to search each piece of luggage or container. Explosives almost universally comprise hydrogen, carbon, nitrogen and oxygen is different ratios. A system that will detect elements like these is based on sending a beam of neutrons into the system. The different elements will emit gamma rays of different energies which are unique to the isotopes concerned. These gamma rays can be measured accurately with a germanium gamma-ray detector and hence the amount of each element determined. This information can then be used to determined the ratios of the four elements and hence whether explosives (or drugs etc.) are present. By using modern technology the germanium detector can also be used to make an image of the object under investigate, similar to an airport baggage scanner. In this case the gamma-rays and scattered neutrons will be detected simultaneously to make a clearer image. By the end of the project we hope to have demonstrated in the laboratory that these ideas are effective and to determine the potential sensitivity.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E009158/1
    Funder Contribution: 245,817 GBP

    Magnetic induction tomography (MIT) is a technique for imaging the electrical conductivity in a cross-section of an object. MIT applies a magnetic field from a current-carrying coil to induce eddy currents in the object which are then sensed by an array of other coils. From these signals, an image of conductivity is reconstructed. This proposal brings together two of the world's leading groups in MIT, from Manchester and South Wales, with a programme designed to address the fundamental theoretical and practical problems of making MIT operate reliably with low-conductivity materials (< 10 S/m). The success of this research could produce a major step forward in the application of MIT, with new opportunities in imaging biological tissues and industrial processes. Three specific application areas will be researched: one biomedical, for imaging acute cerebral stroke, one in glass production, for monitoring process parameters to ensure product quality, and one in the oil industry for imaging the process water in an oil/gas pipeline.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.