Powered by OpenAIRE graph
Found an issue? Give us feedback

Engie (United Kingdom)

Engie (United Kingdom)

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/T022825/1
    Funder Contribution: 1,276,280 GBP

    The UK is committed to become a low-carbon economy, with a reduction in greenhouse gas emissions to net zero by 2050. To do this will require fuel switching, for example from fossil fuel power to renewable energy sources. In the UK the main source of emissions from the residential and public sector in 2018 was the use of natural gas for heating. Due to the diversity of heat demand by consumers, which varies with time/season and in magnitude, no single approach will provide the optimum solution. Geothermal heat has been widely recognised to have the potential to make significant regional contributions to decarbonising heating in the UK, but currently deep geothermal and heat pumps account for just 5.2% of renewable energy sources. This project will investigate the use of closed loop single well geothermal systems as a viable alternative in scenarios where traditional open loop geothermal systems are not feasible. It particularly addresses the possibility of using wells drilled for other purposes, that might have failed in their original objectives, as sources of geothermal energy, thus mitigating some of the costs of their construction. Uniquely, the research will use, in Newcastle city centre, an existing 1.6km deep borehole and adjacent large instrumented building as a research facility, and integrate the research as part of whole energy system approach. Modelling will couple the heating/cooling needs of new urban buildings with an understanding of the performance of a single well geothermal system so that those demands are met. The project will address fundamental challenges in 1) heat abstraction and storage; 2) the engineering challenges of integrating geothermal energy to whole energy systems, and 3) regulatory and legal implications of closed loop systems and subsequent liabilities. The proposed research sets out to mitigate the technical and economic risks associated with deep UK geothermal energy for heating and cooling, and so to facilitate its future adoption to enable zero carbon targets to be reached.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N001745/1
    Funder Contribution: 1,136,810 GBP

    Around 80% of the UK population lives in urban areas, with cities being responsible for about 70% of UK energy use. As a consequence, the importance of cities in tackling key energy and environmental targets is increasingly being recognised. However, meeting these targets will require much of the urban infrastructure to be adapted and renewed to meet the increasing demands for energy services from city residents, while making the transition to a low-carbon economy. Two key challenges for urban infrastructure are: (i) meeting the expected increase in demand for (low carbon) electricity (including new sources of demand for heat and transport), while integrating a variety of (often variable) renewable supply options (including building integrated PV and wind systems) and (ii) increasing the proportion of low carbon heat (and potentially coolth) supply to homes and offices, with likely sources of low carbon heat including air source heat pumps and combined heat and power and district heating schemes using biomass and waste heat. Various forms of decentralised electricity and heat storage could play an important role in meeting these challenges through helping to match supply and demand over periods from seconds to days, maximising the utilisation of existing and new infrastructure, providing links between heat and electricity systems so allowing trade-offs between the two and ensuring secure energy supplies. However, we currently have a poor understanding of the optimal deployment configurations and applications for decentralised electricity and heat storage within the urban environment, any changes to the policy and regulatory environment that would be needed to remove barriers to their deployment, the business models and revenue streams that might make a commercial proposition and the public attitudes to the deployment of different types of storage. This project will use a variety of tools and methods, including technology validation, techno-economic modelling, innovation studies and public attitude surveys, to address specific barriers to the deployment of city-scale energy storage and demonstrate these methods and tools through a number of case studies analysing opportunities for energy storage deployment in the cities of Birmingham and Leeds. The novelty and adventure of our approach can be found both within the individual work packages and in the way that the findings are integrated together and applied in the case studies. So for example, our techno-economic modelling will consider specific (rather than generic) distributed energy storage technologies based on validated data from laboratory and field trials and not idealised data from the literature; our work on policy, regulatory and business models will draw on the real-world experience of our project partners in trying to make a business from operating distributed energy storage in current and likely future market conditions and our work on public attitudes will be the first study of its kind in the UK to examine distributed energy storage.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L019469/1
    Funder Contribution: 3,912,420 GBP

    Energy storage is more important today than at any time in human history. It has a vital role to play in storing electricity from renewable sources (wind, wave, solar) and is key to the electrification of transport. However, current energy storage technologies are not fit for purpose. No single energy storage technology can meet the needs of all applications, but many of the research challenges to improve performance and reduce costs are common across electrochemical, mechanical and thermal devices: new materials need to be developed and tested, thermodynamic processes have to be optimized, and lab-based prototypes must be suitable for scale-up. These technologies have to be integrated into robust and cost effective systems. In response to the situation, especially within the UK context, we propose to establish a SUPERGEN Energy Storage Hub. The consortium will bring together investigators with strong international and national reputations in energy storage research and spanning the entire value chain from the energy storage technologies themselves, through manufacturing, integration, and evaluation of the whole system in which the energy storage would be embedded. The consortium will address a number of the critical barriers that face progress towards the commercialisation of energy storage and its widespread exploitation in the UK and elsewhere. Members of the consortium cover areas in which the UK has both the scientific capability and an energy system need. The activities will embrace energy policy, as well as a roadmap and a vision for energy storage research in the UK stretching into the future, thus setting the agenda for UK energy storage. Through extensive networking, including strong engagement with all stakeholders in industry, NGOs and government the hub will not only remain informed and inform others about the latest developments in energy storage it will also bring the energy storage community in the UK as a whole closer together and through wide dissemination engage the public. Through the strength of the Hub and its links will come more effective pathways for the exploitation of new research and new ideas in commercial products.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023763/1
    Funder Contribution: 6,071,120 GBP

    There is a compelling need for well-trained future UK leaders in, the rapidly growing, Offshore Wind (OSW) Energy sector, whose skills extend across boundaries of engineering and environmental sciences. The Aura CDT proposed here unites world-leading expertise and facilities in offshore wind (OSW) engineering and the environment via academic partnerships and links to industry knowledge of key real-world challenges. The CDT will build a unique PhD cohort programme that forges interdisciplinary collaboration between key UK academic institutions, and the major global industry players and will deliver an integrated research programme, tailored to the industry need, that maximises industrial and academic impact across the OSW sector. The most significant OSW industry cluster operates along the coast of north-east England, centred on the Humber Estuary, where Aura is based. The Humber 'Energy Estuary' is located at the centre of ~90% of all UK OSW projects currently in development. Recent estimates suggest that to meet national energy targets, developers need >4,000 offshore wind turbines, worth £120 billion, within 100 km of the Humber. Location, combined with existing infrastructure, has led the OSW industry to invest in the Humber at a transformative scale. This includes: (1) £315M investment by Siemens and ABP in an OSW turbine blade manufacturing plant, and logistics hub, at Greenport Hull, creating over 1,000 direct jobs; (2) £40M in infrastructure in Grimsby, part of a £6BN ongoing investment in the Humber, supporting Orsted, Eon, Centrica, Siemens-Gamesa and MHI Vestas; (3) The £450M Able Marine Energy Park, a bespoke port facility focused on the operations and maintenance of OSW; and (4) Significant growth in local and regional supply chain companies. The Aura cluster (www.aurawindenergy.com) has the critical mass needed to deliver a multidisciplinary CDT on OSW research and innovation, and train future OSW sector leaders effectively. It is led by the University of Hull, in collaboration with the Universities of Durham, Newcastle and Sheffield. Aura has already forged major collaborations between academia and industry (e.g. Siemens-Gamesa Renewable Energy and Orsted). Core members also include the Offshore Renewable Energy Catapult (OREC) and the National Oceanography Centre (NOC), who respectively are the UK government bodies that directly support innovation in the OSW sector and the development of novel marine environment technology and science. The Aura CDT will develop future leaders with urgently needed skills that span Engineering (EPSRC) and Environmental (NERC) Sciences, whose research plays a key role in solving major OSW challenges. Our vision is to ensure the UK capitalises on a world-leading position in offshore wind energy. The CDT will involve 5 annual cohorts of at least 14 students, supported by EPSRC/NERC and the Universities of Hull, Durham, Newcastle and Sheffield, and by industry. In Year 1, the CDT provides students, recruited from disparate backgrounds, with a consistent foundation of learning in OSW and the Environment, after which they will be awarded a University of Hull PG Diploma in Wind Energy. The Hull PG Diploma consists of 6 x 20 credit modules. In Year 1, Trimester 1, three core modules, adapted from current Hull MSc courses and supported by academics across the partner-institutes, will cover: i) an introduction to OSW, with industry guest lectures; ii) a core skills module, in data analysis and visualization; and iii) an industry-directed group research project that utilises resources and supervisors across the Aura partner institutes and industry partners. In Year 1, Trimester 2, Aura students will specialise further in OSW via 3 modules chosen from >24 relevant Hull MSc level courses. This first year at Hull will be followed in Years 2-4 by a PhD by research at one of the partner institutions, together with a range of continued cohort development and training.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K002252/1
    Funder Contribution: 5,621,020 GBP

    The UK electricity system faces challenges of unprecedented proportions. It is expected that 35 to 40% of the UK electricity demand will be met by renewable generation by 2020, an order of magnitude increase from the present levels. In the context of the targets proposed by the UK Climate Change Committee it is expected that the electricity sector would be almost entirely decarbonised by 2030 with significantly increased levels of electricity production and demand driven by the incorporation of heat and transport sectors into the electricity system. The key concerns are associated with system integration costs driven by radical changes on both the supply and the demand side of the UK low-carbon system. Our analysis to date suggests that a low-carbon electricity future would lead to a massive reduction in the utilisation of conventional electricity generation, transmission and distribution assets. The large-scale deployment of energy storage could mitigate this reduction in utilisation, producing significant savings. In this context, the proposed research aims at (i) developing novel approaches for evaluating the economic and environmental benefits of a range of energy storage technologies that could enhance efficiency of system operation and increase asset utilization; and (ii) innovation around 4 storage technologies; Na-ion, redox flow batteries (RFB), supercapacitors, and thermal energy storage (TES). These have been selected because of their relevance to grid-scale storage applications, their potential for transformative research, our strong and world-leading research track record on these topics and UK opportunities for exploitation of the innovations arising. At the heart of our proposal is a whole systems approach, recognising the need for electrical network experts to work with experts in control, converters and storage, to develop optimum solutions and options for a range of future energy scenarios. This is essential if we are to properly take into account constraints imposed by the network on the storage technologies, and in return limitations imposed by the storage technologies on the network. Our work places emphasis on future energy scenarios relevant to the UK, but the tools, methods and technologies we develop will have wide application. Our work will provide strategic insights and direction to a wide range of stakeholders regarding the development and integration of energy storage technologies in future low carbon electricity grids, and is inspired by both (i) limitations in current grid regulation, market operation, grid investment and control practices that prevent the role of energy storage being understood and its economic and environmental value quantified, and (ii) existing barriers to the development and deployment of cost effective energy storage solutions for grid application. Key outputs from this programme will be; a roadmap for the development of grid scale storage suited to application in the UK; an analysis of policy options that would appropriately support the deployment of storage in the UK; a blueprint for the control of storage in UK distribution networks; patents and high impact papers relating to breakthrough innovations in energy storage technologies; new tools and techniques to analyse the integration of storage into low carbon electrical networks; and a cohort of researchers and PhD students with the correct skills and experience needed to support the future research, development and deployment in this area.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.