Powered by OpenAIRE graph
Found an issue? Give us feedback

AMEC

Country: United Kingdom
8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/D04863X/1
    Funder Contribution: 209,806 GBP

    The design of offshore installations can increase risks to safety of workers building and using these installations. In this research, we aim to investigate how differences between designers influence the quality of designers' judgement, and how the quality of judgement influences installation safety. In the main phase of the research, we will assess individual differences between designers, quality of designers' judgements, and other factors in a sample of over 300 designers. We will assess factors that indicate designers' judgement quality (memory lapses, risky decision-taking). We will do this by asking designers to complete brief assessments several times per day over four periods of one working week. Designers will make these assessments on palmtop computers. We expect to gain over 15,000 such assessments. In this way, the indicator of judgement quality between designers takes into account periodic variations in performance, rather than relying on a single-shot measurement that could be inaccurate.We will then relate indicators of judgement quality, and designers' individual differences, to the safety of the designs they were working on during the period of the study.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E050301/1
    Funder Contribution: 267,328 GBP

    The overall aim of this research proposal is improvement to the safety, design criteria and assessment of multi-strand anchorages. In order to achieve this, the work will focus on the most critical aspects, the anchorage head and fixed anchorage length. The research will combine extensive full-scale laboratory work with numerical modelling. The overall testing will comprise initial field and laboratory testing. The initial field testing will be carried out on a number of already installed multi strand anchorages with different anchorage head assemblies. This will be followed by the construction and testing of two full scale strand anchorages - one will be a two-strand rock anchorage and the other will be a typical four-strand rock anchorages. In addition anchorage head test rigs will be constructed in order to obtain the stiffness characteristics of the anchorage heads. A numerical model of multi strand anchorages will be developed in order to investigate their dynamic response to changes in the anchorage head and/or fixed anchorage length. This will be validated and then used to provide the optimal stiffness characteristics for an anchorage head suitable for load estimation using dynamic testing.Finally, the results from both the laboratory and numerical studies will lead to the development of a new anchorage head design with a view to improving the assessment of the load condition of these anchorages. This will be tested on a full scale field anchorages of a similar design.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M022684/2
    Funder Contribution: 464,161 GBP

    Computer models have played a central role in assessing the behaviour of nuclear power facilities for decades, they have ensured nuclear operations remain safe to both the public and the environment. The aim of the project is to develop a new and highly advanced modelling capability that is accurate, robust and validated. A new multi-physics, predictive modelling framework will be formed for simulating neutron transport, fluid flows and structural interaction problems. It aims to combine novel and world leading technologies in numerical methods and high performance computing to form a simulation tool for geometrically complex, nuclear engineering problems. This will surpass current computational capabilities, by providing modelling accuracy through the use of efficient adaptive resolution, and will tackle grand challenge problems such as full core reactor modelling. This model will be developed within a predictive framework that combines modelling with uncertainty and experimental data. This is a vital component as inherent uncertainties in data, geometry, parameterisations and measurement will place uncertainties in the modelled predictions. By integrating these uncertainties within the calculations we can quantify the uncertainty they place on the final result. The combination of all these technologies will result in the first modelling framework of its kind, offering unprecedented detail through optimised resolution with combined uncertainty quantification and data assimilation. It will provide substantially improved analysis of nuclear facilities, improve operational efficiency and, ultimately, help ensure its safety. The project will work closely with world leading academics and industry, both within the UK and overseas. This collaboration will result in the technologies being used to analyse future reactor designs, including those reactors due to be built in the UK over the coming years.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M022684/1
    Funder Contribution: 662,150 GBP

    Computer models have played a central role in assessing the behaviour of nuclear power facilities for decades, they have ensured nuclear operations remain safe to both the public and the environment. The aim of the project is to develop a new and highly advanced modelling capability that is accurate, robust and validated. A new multi-physics, predictive modelling framework will be formed for simulating neutron transport, fluid flows and structural interaction problems. It aims to combine novel and world leading technologies in numerical methods and high performance computing to form a simulation tool for geometrically complex, nuclear engineering problems. This will surpass current computational capabilities, by providing modelling accuracy through the use of efficient adaptive resolution, and will tackle grand challenge problems such as full core reactor modelling. This model will be developed within a predictive framework that combines modelling with uncertainty and experimental data. This is a vital component as inherent uncertainties in data, geometry, parameterisations and measurement will place uncertainties in the modelled predictions. By integrating these uncertainties within the calculations we can quantify the uncertainty they place on the final result. The combination of all these technologies will result in the first modelling framework of its kind, offering unprecedented detail through optimised resolution with combined uncertainty quantification and data assimilation. It will provide substantially improved analysis of nuclear facilities, improve operational efficiency and, ultimately, help ensure its safety. The project will work closely with world leading academics and industry, both within the UK and overseas. This collaboration will result in the technologies being used to analyse future reactor designs, including those reactors due to be built in the UK over the coming years.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/D034566/1
    Funder Contribution: 2,552,790 GBP

    This is a Consortium of 8 Universities and 1 Research Laboratory with expertise in wind turbine design, location & operation, aerodynamics, hydrodynamics, materials, electrical machinery, control, reliability and condition monitoring. The Consortium has the active support of 9 Partners with Industrial and Research experience, including wind farm Operators, Manufacturers & Consultants. The Consortium's objective is to investigate Wind Energy Technologies.The Management Hub is Strathclyde University, the Finance Hub is Durham University.The challenge facing the Consortium is significant encompassing the search for engineering solutions:1. To improve the efficiency and reliability of wind energy.2. To reduce the cost of energy production.3. To facilitate the siting of machines in off-shore locations.4. To reduce the impact on existing infrastructure.The interdependences of the challenges and the interdisciplinary nature of the work call for flexibility, imagination and careful co-ordination of effort from the consortium that includes experts in all the relevant engineering disciplines.We believe that the Consortium offers a unique opportunity in wind energy research. The EU Framework VI programme addresses renewable energy but concentrates on the demonstration of technology. In contrast, the Consortium will focus sharply on the technological challenges, particularly those related to the exploitation of the UK's extensive offshore wind resource. The Consortium will undertake some truly interdisciplinary research that is essential in a technology comprised of many different branches of engineering. The overall objective is to improve the acceptability and cost-effectiveness of large scale offshore wind energy development by 1. Investigating the reliability and availability of wind turbines and to modelling their failure modes in order to develop a predictive and proactive condition monitoring system.2. Assessing the potential design limits of large wind turbines via detailed understanding of technical developments in innovative materials and active load reduction.3. Developing new/improved methods for optimised siting and design of large wind turbines as influenced by wind flow, seabed movement, lightning and radar visibility.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.