Powered by OpenAIRE graph
Found an issue? Give us feedback

IZNAB Sp. z o.o.

IZNAB SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA
Country: Poland

IZNAB Sp. z o.o.

14 Projects, page 1 of 3
  • Funder: European Commission Project Code: 101192888
    Overall Budget: 2,500,000 EURFunder Contribution: 2,500,000 EUR

    This project aims to develop and validate (to reach TRL 4) a novel thermochemical technology that not only can store mid-temperature heat (250-400 deg C)This project aims to develop and validate (to reach TRL 4) a novel thermochemical technology that not only can store heat at competitive cost and very high efficiency but also may upgrade that to considerably higher temperatures. This way, the technology enables the upgrade of medium-temperature heat to drive high-temperature and more efficient power cycles, e.g. supercritical. The heat is stored in the form of chemical bonds making it suitable for a long-duration and seasonal storage solution for power and heating applications This novel and outstanding heat storage/upgrading concept offers some further important features that make it even more promising. These are its i) competitive cost-effectiveness compared to other technologies due to its expected long lifespan, and design/operation simplicity, ii) compatibility with a variety of heat sources (solar collectors, industrial waste heat, electricity, etc.), and power blocks, upon the right material selection, iii) capability of continuous discharging with periodic charging as a requirement for many power cycles upon proper sizing/design, iv) scalability up to several-hundred MWhs of capacity and storage duration from several days to even seasonal with minimal losses, v) no environmental impacts, toxicity, and human health issues, and vi) many more potential applications upon further and case-specific developments in the future. The consortium consists of 9 partners from all corners of the EU; including 3 universities, 1 research center, 2 SMEs, 2 large enterprises, and 1 NGO, ensuring that all required expertise exists for the successful accomplishment of the project and future exploitation, and also the partners optimally supplement each other. The technology will be demonstrated in different designs and integrations at 5 kW heat capacity at the DLR laboratory.

    more_vert
  • Funder: European Commission Project Code: 101000801
    Overall Budget: 4,651,860 EURFunder Contribution: 4,029,240 EUR

    This project is aimed at a new technology for heating, cooling, air humidity control and water recovery in greenhouses as well as for drying of agricultural goods using thermo-chemical conversion principles based on the use of salt solutions (thermochemical fluids). The common effect in all applications is the hygroscopic property of thermochemical fluids, allowing an uptake of water vapor from air thus releasing sensible heat involved in the phase change. The technology allows to (1) use unexplored potentials of solar- and residual heat at farm level, (2) to convert and to store the heat into thermochemical potential without thermal losses and (3) to use the potential through re-conversion of the potential into heat within the above-mentioned applications. Within two different demonstrators in Central European Climate (heating) and Mediterranean Climate (cooling, water recovery and desalination) the technology will be tested, further developed and disseminated. Lab tests will explore the processes and materials involved, will include tests on material drying and on interactions between different applications. Development of improved knowledge on modelling of the involved processes, the simulation and control of specific applications and the development of control strategies are further tasks to provide a bright insight into the novel approach. Strategies to bring the technology to market will be developed. Thermochemical applications in agriculture have the potential to significantly reduce the energy consumption in greenhouse climate control as well as in crop drying and will provide an alternative to energy intensive water desalination in arid regions. The uptake, conversion and storage of solar heat from greenhouses even provides the perspective to turn protected intensive horticulture from an energy/water consuming to an energy/water producing method, allowing to secure the important market of food production and food processing and to extend it to new regions.

    more_vert
  • Funder: European Commission Project Code: 723916
    Overall Budget: 3,361,000 EURFunder Contribution: 3,361,000 EUR

    The basic idea is to embed the waste from building demolition (fragmented bricks, fragmented plaster or concrete, fragmented glasses, machined wood from windows frame or from wood beams after demolition etc.) in a geopolymer matrix to produce prefabricated panels for different use. The main objective of InnoWEE is in fact the development of an optimized reuse of Construction and Demolition Waste (CDW) materials producing high add value prefabricated insulating and radiating panels to be used in energy efficient buildings. The proposal is based on: 1) Recovery, selection and disassembling of CDW that will be characterized and eventually treated to yield suitable raw materials to be used for production of prefabricated components. 2) Development of new high performance prefabricated insulating geopolymeric panels for building walls envelopes and radiating panels for indoor wall and ceilings with low environmental impact, low embodied energy, low CO2 emissions, high thermal performance. Panels will be fabricated recycling cement, bricks, mortars, glass and wood reaching at least 30% of CDW. 3) To install the panels in demo sites characterized by different climate to evaluate their performance in terms of reducing energy use and minimizing environmental impacts. 4) To use an integrated design process and a holistic approach for the whole life cycle of the materials and components and produce a material that is cost effective, competitive, robust, reliable and low maintenance. 5) To create practical and sustainable building solutions that are easy to integrate into building designs, easy to install, take in consideration the needs of the stakeholders that strongly influence the market, and have been tested to meet all the current standards.

    more_vert
  • Funder: European Commission Project Code: 820670
    Overall Budget: 9,884,900 EURFunder Contribution: 7,012,780 EUR

    The project aims to design, develop and validate an innovative solution, the CIRMET solution, to provide energy and resource flexibility to Energy Intensive Industries (EIIs) The CIRMET solution will be validated in an operational environment (TRL7) in an existing process plant (non-ferrous sector) while the replicability of the solution will be assessed in three additional energy intensive sectors (steel, cement and water sector). For this purpose, three new demonstrators will be build up, plus the retrofitting of existing industry process unit. The new demonstrators or modules will be: EFFIMELT furnace, a new concept of flexible and modular process unit for industrial wastes treatment, RECUWASTE heat recovery unit, for flue gas heat recovery and transformation into compressed air to re-used in the same plant, having also the possibility of storing the excess energy and AFF40 (Analytic For Factory 4.0) platform, to improve process plant competitiveness, to increase energy and resource efficiency by controlling and optimizing process units. The retrofitting of an existing process unit (Metallo S.L process furnace) will be done to implement and validate the complete CIRMET solution. A well-balanced consortium formed by academia, research organization, SMEs and energy intensive industries ensures the whole value chain needed to achieve project objectives and paves the way for future exploitation of the solution. The effective dissemination of project outcomes to the current and next generation of citizen and employees through the development of learning resources with flexible usage to be carried out by education/training experts within the consortium is eventually also an important objective of the consortium.

    more_vert
  • Funder: European Commission Project Code: 894800
    Overall Budget: 2,049,880 EURFunder Contribution: 1,999,880 EUR

    EU is currently responsible for 11.6% of the world's final energy consumption (9425 Mtoe in 2014) and for 10.8% of the world's final CO2 emissions (33.3 GtCO2 in 2014) with Industry accounting for 25.9% of the energy consumption and for 47.7% of the final CO2 emissions. Energy in industry is mostly used for process heating and cooling, which represents about 63% of the total industry final energy demand. A rather significant theoretical waste heat potential, accounting to 370.41 TWh (Waste heat) per year, has been estimated in the European industry. Energy Intensive Industries (EEIs) are unsurprisingly the top heat emitters. On the other hand, it is estimated that at least 50-70% of EU households could be served more cheaply by thermal infrastructure through district heating networks. District heating currently provides only 8% of the heating demand in Europe. There is therefore an opportunity for increasing energy efficiency growth rates and contributing significantly to the decarbonization targets of European Industry by using the large underutilized energy resources found throughout European EEIs to substitute conventional heat sources in the European industrial and urban sector. The overall objective of INCUBIS is: To help decarbonise European industry by 2050 by unlocking the market potential of ENERGY SYMBIOSIS through developing and deploying five (5) Energy Symbiosis Incubators across Europe, complemented by a digital Cloud Incubator, thus enabling the utilization of waste energy from EEIs. In doing so INCUBIS will achieve total energy savings of 200GWh/year, trigger €6 Million of investments in sustainable energy, generate benefits of €4 Million, achieve GHG reduction of 55k tCO2-eq/year, and convince 1450 business over 40 industrial parks to commit to energy cooperation. To achieve this INCUBIS has put together a prestigious consortium of 8 partners including 5 SMEs that span 6 European countries and will work for the duration of 36 months.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.