
XL Catlin Insurance Company SE
XL Catlin Insurance Company SE
2 Projects, page 1 of 1
assignment_turned_in Project2019 - 2024Partners:College of Civil Engineers of Pichinc, Quito Alcaldia, Oxfam, Global Network of Civil Soc Org (GNDR), Willis Research Network +33 partnersCollege of Civil Engineers of Pichinc,Quito Alcaldia,Oxfam,Global Network of Civil Soc Org (GNDR),Willis Research Network,Practical Action Consulting Nepal,Dask Instanbul,START Network,Nepal Development Research Inst NDRI,Dask Instanbul,XL Catlin Insurance Company SE,Asian Disaster Preparedness Center,LUMANTI Support Group for Shelter,University of Edinburgh,National Disaster Risk Reduction Centre,UN HABITAT,Oxfam GB,ONUESC,Kounkuey Design Initiative,SDI Kenya,Towers Watson,Asian Disaster Preparedness Center,Makerere University,UNESCO,College of Civil Engineers of Pichinc,Architects Association of Ecuador,Practical Action (International),Makerere University,Kounkuey Design Initiative,Lumanti,UN HABITAT,SDI Kenya,XL Catlin Insurance Company SE,Global Network of Civil Soc Org (GNDR),National Disaster Risk Reduction Centre,Architects Association of Ecuador,Nepal Development Research Inst NDRI,Start NetworkFunder: UK Research and Innovation Project Code: NE/S009000/1Funder Contribution: 17,657,300 GBPThe Hub will reduce disaster risk for the poor in tomorrow's cities. The failure to integrate disaster risk resilience into urban planning and decision-making is a persistent intractable challenge that condemns hundreds of millions of the World's poor to continued cyclical destruction of their lives and livelihoods. It presents a major barrier to the delivery of the Sustainable Development Goals in expanding urban systems. Science and technology can help, but only against complex multi-hazard context of urban life and the social and cultural background to decision-making in developing countries. Science-informed urbanisation, co-produced and properly integrated with decision support for city authorities, offers the possibility of risk-sensitive development for millions of the global poor. This is a major opportunity - some 60% of the area expected to be urban by 2030 is yet to be built. Our aim is to catalyse a transition from crisis management to risk-informed planning in four partner cities and globally through collaborating International governance organisations. The Hub, co-designed with local and international stakeholders from the start, will deliver this agenda through integrated research across four urban systems - Istanbul, Kathmandu, Nairobi and Quito - chosen for their multi-hazard exposure, and variety of urban form, development status and governance. Trusted core partnerships from previous Global Challenge Research Fund, Newton Fund and UK Research Council projects provide solid foundations on which city based research projects have been built around identified, existing, policy interventions to provide research solutions to specific current development problems. We have developed innovative, strategic research and impact funds and capable management processes constantly to monitor progress and to reinforce successful research directions and impact pathways. In each urban system, the Hub will reduce risk for 1-4 million people by (1) Co-producing forensic examinations of risk root causes, drivers of vulnerability and trend analysis of decision-making culture for key, historic multi-hazard events. (2) Combining quantitative, multi-hazard intensity, exposure and vulnerability analysis using advances in earth observation, citizen science, low cost sensors and high-resolution surveys with institutional and power analysis to allow multi-hazard risk assessment to interface with urban planning culture and engineering. (3) Convene diverse stakeholder groups-communities, schools, municipalities private enterprise, national agencies- around new understanding of multi-hazard urban disaster risk stimulating engagement and innovation in making risk-sensitive development choices to help meet the SDGs and Sendai Framework. Impact will occur both within and beyond the life of the Hub and will raise the visibility of cities in global risk analysis and policy making. City Partnerships, integrating city authorities, researchers, community leaders and the private sector, will develop and own initiatives including high-resolution validated models of multi-hazard risk to reflect individual experience and inform urban development planning, tools and methods for monitoring, evaluation and audit of disaster risk, and recommendations for planning policy to mitigate risks in future development. City partnerships will collaborate with national and regional city networks, policy champions and UN agencies using research outputs to structure city and community plans responding to the Sendai Framework and targeted SDG indicators, and build methods and capacity for reporting and wider critique of the SDG and Sendai reporting process. Legacy will be enabled through the ownership of risk assessment and resilience building tools by city and international partners who will identify need, own, modify and deploy tools beyond the life of the Hub.
more_vert assignment_turned_in Project2017 - 2022Partners:Atrium Space Insurance Consortium, Met Office, British Antarctic Survey, SES Luxembourg, University of California Los Angeles +14 partnersAtrium Space Insurance Consortium,Met Office,British Antarctic Survey,SES Luxembourg,University of California Los Angeles,MET OFFICE,Airbus Defence and Space,NERC BRITISH ANTARCTIC SURVEY,XL Catlin Insurance Company SE,NERC British Antarctic Survey,XL Catlin Insurance Company SE,NASA,University of California Los Angeles,Airbus Defence and Space,Atrium Space Insurance Consortium,NASA,Airbus (United Kingdom),Met Office,SES LuxembourgFunder: UK Research and Innovation Project Code: NE/P01738X/1Funder Contribution: 1,218,260 GBPOver the last 10 years the number of operational satellites in orbit has grown from 450 to more than 1300. We rely on these satellites more than ever before for a wide range of applications such as mobile phones, TV signals, internet, navigation and financial services. All these satellites must be designed to withstand the harsh radiation environment in space for a design life that can be as long as 15 years or more. Space weather events can increase electron radiation levels by five orders of magnitude in the Earth's Van Allen radiation belts causing satellite charging, disruption to satellite operations and sometimes satellite loss. For example, in 2003 it was estimated that at least 10% of all operational satellites suffered anomalies (malfunctions1) during a large space weather event known as the Halloween storm. It is therefore important to understand how and why radiation levels vary so much so that engineers and business can assess impact and develop mitigation measures. New results from the NASA Van Allen Probes and THEMIS satellite missions show that wave-particle interactions play the major role in the acceleration, transport and loss of high energy electrons and hence the variability of the radiation belts. This proposal brings together scientists from across the UK with stakeholders from the insurance and satellite services sector. We will process data from scientific satellites such as Van Allen Probes and THEMIS to obtain information on four very important type of waves known as magnetosonic waves, and radio-waves known as plasmaspheric hiss, lightning generated whistlers and transmitter waves. We will use data, theory and models to determine the properties of the waves and how they vary during space weather events. We will conduct studies to assess the acceleration, transport and loss of electrons due to each wave type using quasi-linear theory. We will use simulations to test whether nonlinear effects result in more particle acceleration and loss compared to quasi-linear theory. We will analyse compressional magnetosonic waves in the ultra-low frequency range and determine their effectiveness for transporting electrons across the magnetic field, and whether the transport is diffusive or not. We will incorporate the results of these studies into our state-of-the-art global radiation belt model to simulate known space weather events, and compare the results against data to highlight the importance of the waves and improve the model. We will also include local time effects and compare loss rates against data from the ground and other satellites to constrain the model. We will simulate extreme space weather events using our existing radiation belt model, and an MHD model so that we can assess the role of waves in the rapid formation of a radiation belt such as occurred in 1991 in less than 2 minutes. We will develop a stakeholder community consisting of space insurance, satellite operators and forecasters who will provide input to our research and who will use the results for risk assessment, anomaly resolution and operational planning. The project will deliver new processed data, a better forecasting capability and expertise that will support the UK Government assessment of severe space weather for the National Risk Register2 and the growth of the satellite industry. 1. Cannon, P, S., et al. (2013), Extreme Space Weather: Impacts on Engineered Systems and Infrastructure, Royal Academy of Engineering, London, SW1A 2WH. 2. Cabinet Office, (2012), National risk register of civil emergencies, Whitehall, London SW1A 2WH, www.cabinetoffice.gov.uk.
more_vert