Powered by OpenAIRE graph
Found an issue? Give us feedback

CYTEC ENGINEERED MATERIALS LIMITED

Country: United Kingdom

CYTEC ENGINEERED MATERIALS LIMITED

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
5 Projects, page 1 of 1
  • Funder: European Commission Project Code: 252044
    more_vert
  • Funder: European Commission Project Code: 252045
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N007190/1
    Funder Contribution: 989,588 GBP

    The advent of carbon-fibre composite passenger aircraft, such as the Boeing 787 and the Airbus A350, has been primarily driven by the need to reduce structural weight. Higher operating efficiencies per revenue passenger kilometre also contribute to a reduction in environmental impact where 1 kg of fuel saved equates to a reduction of 3.15 kg of CO2 emissions. Indeed the European Union has set ambitious aircraft emission reduction targets by 2050 as the level of commercial air traffic is set to continue doubling every fifteen years. The high specific strength and stiffness, and corrosion and fatigue resistance of carbon-fibre composite materials, make them highly suitable for lightweight aerostructures. In laminated form, these superior properties are tempered by the material's relatively low through-thickness strength and fracture toughness which makes composite structures susceptible to impact damage. Carbon-fibre composites also have low electrical conductivity which necessitates the need for additional measures to ensure adequate lightning strike protection. The industry has adopted the use of a fine metallic mesh incorporated into the aerodynamic surfaces. This approach adds unnecessary weight to the structure as well as increasing manufacture and maintenance complexity. Composite materials also have low thermal conductivity which impacts on the design of anti-icing systems. In recent years, a number of research groups have explored the unique properties of nanoparticles dispersed in resin or introduced between lamina interfaces, to address these limitations. The use of carbon nanotubes (CNTs) especially, generated much excitement due their phenomenal structural and transport properties. The results to date have been highly variable and have fallen well short of expectations. This is partly due to a lack of interdisciplinary collaboration where fundamental questions, requiring input from chemists, physicists, material scientists and research engineers, were not adequately investigated. The proposed research in MACANTA aims to rectify this by bringing together a team with highly complementary expertise to increase the fundamental understanding of the influence of physical and chemical characteristics of different CNT assemblies in pursuit of developing multifunctional composites which mitigate the known shortcomings as well as providing additional functionality. A unique aspect of MACANTA is the emphasis on understanding and exploiting the different forms of CNT assemblies to best serve specific functions and integrated within a single structure. The team has the unique capability of producing very high quality CNTs, produced as highly-aligned 'forests'. These may be harnessed in this form and strategically placed between plies to increase through-thickness fracture toughness. Beyond simply dispersing within the matrix, they may also be 'sheared' to produce aligned buckypaper, drawn into very thin webs or spun into yarns, where their respective electrical and thermal conductivity will be investigated. These CNT assemblies will be assessed for improving lightning strike protection and providing anti-icing capability. The piezoresistive property of CNT webs will also be explored for in-situ structural health monitoring of adhesively bonded composite joints. The successful completion of the research proposed in MACANTA will culminate in the manufacture of a set of demonstrator multifunctional composite panels. They will represent a significant advancement in the state-of-the-art and provide a competitive advantage to interested stakeholders. It will also provide an ideal training platform for the development of skills of three postdoctoral researchers and two associated PhD students funded by QUB.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016281/1
    Funder Contribution: 4,138,920 GBP

    This Centre for Doctoral Training (CDT) is in the field of Polymers, Soft Matter and Colloids. This area of science deals with long-chain molecules, gels, particles, pastes and complex fluids. It is of fundamental importance for many commercial sectors, including paints & coatings, home & personal care products, agrochemicals, engine oils & lubrication, enhanced oil recovery, biomedical devices & drug delivery. Thus substantial EPSRC investment in this industrially-relevant field will directly support the UK economy and enhance its competitiveness over the longer term, as well as contributing to our scientific capacity to address important technical challenges and major societal problems such as sustainability and energy security. Sheffield Polymer Centre academics have a wealth of research experience in the areas of polymer chemistry, polymer physics, colloid science, soft matter physics and polymer engineering. This breadth of expertise is unique and is certainly unrivalled anywhere in the UK. Between us, we offer a superb range of research facilities and state-of-the-art instrumentation that provide excellent postgraduate training opportunities. We have also run a popular annual industrial training course and three relevant taught MSc courses for many years. Thus the logistical experience of our current administrative staff and existing teaching infrastructure will provide invaluable support in running this new CDT. Moreover, this prior activity underlines our institution's deep commitment to this important interdisciplinary field. Our vision is to engage closely with a wide range of companies, e.g. AkzoNobel, Lubrizol, P & G, Cytec, Synthomer, Scott Bader, GEO, Wellstream, LBFoster, Philips, Ossila, Syngenta, DSM, Ashland, BP and Unilever, in order to provide the next generation of highly skilled PhD scientists with high-level technical skills, intellectual rigour, excellent communication skills, flexibility and business acumen. This is essential if we are to produce the creative problem-solvers that will be required to tackle the many formidable technical and societal challenges now facing mankind. Our ambition is to secure at least £2.0 million from our industrial partners in order to support fifty CASE PhD projects over five years. Six PhD studentships p.a. (i.e. thirty in total) are requested from EPSRC, which will be supplemented by a substantial institutional contribution of three studentships p.a. (i.e. fifteen in total). This institutional commitment is in recognition of the continuing strategic importance of this research area to the University of Sheffield. An additional studentship p.a. (i.e. five in total) will be funded by top-slicing the enhanced CASE contributions from our industrial partners to make up the annual cohort of ten students. EPSRC investment in this CDT is warranted given our substantial institutional portfolio of many active EPSRC grants (including Programme and Platform grants), plus a £2.0 M ERC grant. Our CDT training programme will include the following highly distinctive features: (i) our unrivalled breadth of academic knowledge and experience; (ii) a choice of research projects for our PhD students prior to their enrolment; (iii) an initial two-week training course on the basic principles of polymer science and engineering; (iv) a monthly seminar programme led by industrial scientists to expose our students to a wide range of commercially-relevant topics; (v) a six-month secondment with the industrial partner in the latter part of the research programme, which will provide our students with invaluable experience of the workplace and hence prepare them for their industrial and/or managerial careers; (vi) a 'business enterprise' course led by an external consultant (Jo Haigh) and one of our industrial partners (Synthomer) to develop and encourage entrepreneurial flair in each PhD cohort; (vii) a visit to an overseas academic laboratory to facilitate international collaboration.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E001874/1
    Funder Contribution: 9,770,800 GBP

    The Cranfield IMRC vision is to grow the existing world class research activity through the development and interaction between:Manufacturing Technologies and Product/Service Systems that move UK manufacturing up the value chain to provide high added value manufacturing business opportunities.This research vision builds on the existing strengths and expertise at Cranfield and is complementary to the activities at other IMRCs. It represents a unique combination of manufacturing research skills and resource that will address key aspects of the UK's future manufacturing needs. The research is multi-disciplinary and cross-sectoral and is designed to promote knowledge transfer between sectors. To realise this vision the Cranfield IMRC has two interdependent strategic aims which will be pursued simultaneously:1.To produce world/beating process and product technologies in the areas of precision engineering and materials processing.2.To enable the creation and exploitation of these technologies within the context of service/based competitive strategies.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.