
Glasgow Science Centre Ltd
Glasgow Science Centre Ltd
9 Projects, page 1 of 2
assignment_turned_in Project2008 - 2010Partners:We The Curious Limited, Boots Company plc, University of York, Glasgow Science Centre Ltd, At-Bristol Limited +3 partnersWe The Curious Limited,Boots Company plc,University of York,Glasgow Science Centre Ltd,At-Bristol Limited,Glasgow Science Centre Ltd,University of York,The Boots Company PlcFunder: UK Research and Innovation Project Code: EP/F022867/1Funder Contribution: 74,804 GBPIt is almost impossible to ignore the profusion of information currently in the media regarding environmental issues. In particular, with the recent announcements from leading retailers declaring their commitment to becoming carbon neutral, consumers' awareness of these issues is continuing to grow. However, to what extent do they understand the science behind these claims and are they able to access an easy-to-understand and balanced source of information to answer their queries? It is increasingly being recognised that the application of green chemistry will be fundamental to the production of environmentally friendly products that have both the confidence and trust of consumers. The emergence of green chemistry has been one of the most significant developments in the chemical sciences in recent years. However the awareness and understanding of green chemistry amongst the general public is limited, and it is commonly perceived that chemistry is the cause of environmental problems rather than the solution. This lack of confidence in chemicals could be at least in part attributed to current concerns highlighted in the press and pressure from NGOs, and can only be resolved through directly engaging with consumers and connecting them with chemicals in a positive way. The Green Chemistry Centre at the University of York in partnership with Boots the Chemists, At-Bristol and Glasgow Science Centre, seek to address this issue through the creation and delivery of a hands-on and informative display using touch screen technology to explore products consumers typically use daily e.g. shower gel, moisturiser, toothpaste etc. By entering a virtual bathroom and selecting one of these products, the visitor will experience a series of multiple-choice picture-based and animated questions tailored to uncover what the product is made from, how it is made, how it works and what happens after we use it, and will incorporate the steps that can be taken to improve their sustainability through the application of green chemistry. The display will be hosted at both At-Bristol and Glasgow Science Centre, and will be designed to appeal to both adults and children. Through this activity the project team aim to engage the public and get them thinking about the environmental implications of the products they enjoy as part of everyday life and promote a positive connection between green chemistry and consumer products.
more_vert assignment_turned_in Project2016 - 2019Partners:Curtin University, FEI Company, Natural History Museum, The University of Texas at Austin, Glasgow Science Centre Ltd +23 partnersCurtin University,FEI Company,Natural History Museum,The University of Texas at Austin,Glasgow Science Centre Ltd,Jeol UK Ltd,Pufferfish Ltd,FEI Company,Berkeley Geochronology Center,German Aerospace Center (DLR),Curtin University,University of Edinburgh,Pufferfish Ltd,The Natural History Museum,NERC British Geological Survey,DLR,Autonomous University of Barcelona (UAB),DLR Oberpfaffenhofen,University of Glasgow,The Hunterian,Glasgow Science Centre Ltd,University of Glasgow,BGC,British Geological Survey,Natural History Museum,Jeol UK Ltd,Hunterian Museum and Art Gallery,Natural History MuseumFunder: UK Research and Innovation Project Code: ST/N000846/1Funder Contribution: 381,686 GBPIn this research programme, planetary scientists and engineers from the University of Glasgow and the Scottish Universities Environmental Research Centre have joined forces to answer important questions concerning the origin and evolution of asteroids, the Moon and Mars. The emphasis of our work is on understanding the thermal histories of these planetary bodies over a range of time and distance scales, and how water and carbon-rich molecules have been transported within and between them. One part of the consortium will explore the formation and subsequent history of asteroids. Our focus is on primitive asteroids, which have changed little since they formed 4500 million years ago within a cloud of dust and gas called the solar nebula. These bodies are far smaller than the planets, but are scientifically very important because they contain water and carbon-rich molecules, both of which are essential to life. We want to understand the full range of materials that went to form these asteroids, and where in the solar nebular they came from. Although they are very primitive, most of these asteroids have been changed by chemical reactions that were driven by liquid water, itself generated by the melting of ice. We will ask whether the heat needed to melt this ice was produced by the decay of radioactive elements, or by collisions with other asteroids. The answer to this question has important implications for understanding how asteroids of all types evolved, and what we may find when samples of primitive asteroids are collected and returned to Earth. Pieces of primitive asteroids also fall to Earth as meteorites, and bring with them some of their primordial water, along with molecules that are rich in carbon. Many scientists think that much of the water on Earth today was obtained from outer space, and consortium researchers would like to test this idea. In order to understand the nature and volume of water and carbon that would have been delivered by meteorites, we first need to develop reliable ways to distinguish extraterrestrial carbon and water from the carbon and water that has been added to the meteorite after it fell to Earth. We plan to do this by identifying 'fingerprints' of terrestrial water and carbon so that they can be subtracted from the extraterrestrial components. One of the main ways in which this carbon was delivered to Earth during its earliest times was by large meteorites colliding with the surface of our planet at high velocities. Thus we also wish to understand the extent to which the extraterrestrial carbon was preserved or transformed during these energetic impact events. The formation and early thermal history of the moon is another area of interest for the consortium. In particular, we will ask when its rocky crust was formed, and use its impact history to determine meteorite flux throughout the inner solar system. To answer these questions we will analyse meteorites and samples collected by the Apollo and Luna missions to determine the amounts of chemical elements including argon and lead that these rocks contain. Information on the temperature of surface and sub-surface regions of Mars can help us to understand processes including the interaction of the planet's crust with liquid water. In order to be able to explore these processes using information on the thermal properties of martian rocks that will soon to be obtained by the NASA InSight lander, we will undertake a laboratory study of the effects of heating and cooling on a simulated martian surface. Hot water reaching the surface of Mars from its interior may once have created environments that were suitable for life to develop, and minerals formed by this water could have preserved the traces of any microorganisms that were present. We will assess the possibility that such springs could have preserved traces of past martian life by examining a unique high-altitude hot spring system on Earth.
more_vert assignment_turned_in Project2006 - 2007Partners:Glasgow Science Centre Ltd, University of Glasgow, University of Glasgow, Glasgow Science Centre LtdGlasgow Science Centre Ltd,University of Glasgow,University of Glasgow,Glasgow Science Centre LtdFunder: UK Research and Innovation Project Code: EP/D067553/1Funder Contribution: 47,726 GBPThe main concern of the nanovisions project will be the production of exciting, novel, images, stills and animations that will be employed in a variety of forums, exhibition, lectures and websites. At the Department of Electronics and Electrical Engineering there are a three major research groups, nano, bio and opto electronics; their activities involve nano and micro technology. including modeling, design, fabrication and characterisation of devices. These activities are all a rich source of images and concepts that can be rendered into visually exciting displays.Murray Robertson of Visual Element will use the visual material supplied by the department of electronics and electrical engineering and will produce images, stills and animations based on this material. Murray Roberstson brings to this a proven track record in creating visually exciting material illustrating scientific topics. The initially the target, after 6 months of effort on producing the material, will be to have an exhibition at the Glasgow Science centre and an associated series of lectures. The material will then be made available through a web site, and the exhibition will be transferred to the James Watt Nanofabrication centre where it will be given a more permanent home. There will also be a significant evaluation activity. The project will be monitored by taking note of visitor numbers, hits on the web site and copyright requests on the images. First reaction evaluation will come through assessing visitors questionnaires and initial press reaction. Longer term evaluation will come through assessing the impact on the national debate on nanoscience and technology.
more_vert assignment_turned_in Project2010 - 2012Partners:Glasgow Science Centre Ltd, University of Glasgow, Glasgow Science Centre Ltd, University of GlasgowGlasgow Science Centre Ltd,University of Glasgow,Glasgow Science Centre Ltd,University of GlasgowFunder: UK Research and Innovation Project Code: EP/H047395/1Funder Contribution: 19,902 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
more_vert assignment_turned_in Project2015 - 2018Partners:Sunderland Eye Infirmary, GSA, Sunderland Eye Infirmary, University of Glasgow, Glasgow Science Centre Ltd +3 partnersSunderland Eye Infirmary,GSA,Sunderland Eye Infirmary,University of Glasgow,Glasgow Science Centre Ltd,University of Glasgow,Glasgow Science Centre Ltd,Glasgow School of ArtFunder: UK Research and Innovation Project Code: EP/M010724/1Funder Contribution: 460,918 GBPWe propose building several novel optical instruments that extend the possibilities of conventional ray optics designs by utilising pixellated ray optics. The Glasgow team has pioneered micro-structured sheets called telescope windows (TWs), currently at the early demonstrator stage, that can perform very general light-ray-direction changes. They consist of arrays of micro-telescopes and can be understood as pixellated optical components (each telescope being a pixel) which introduce, at the boundaries between neighbouring pixels, discontinuities in the transmitted light beams. TWs therefore remove the global continuity of wave fronts, which in turn is assumed in the derivation of a number of properties (and therefore limitations) of light-ray fields. If the pixel size is chosen appropriately, the pixellation can be almost unnoticeable. The vision of this work is that, by replacing globally continuous wave fronts with piecewise continuous wave fronts, the possibilities offered by optics, specifically ray optics, can be significantly extended. The first applications of this technology form the focus of this proposal: * TWs can form pixellated transformation-optics (PTO) devices that work across the entire visible wavelength range. * TWs can distort the view as if the observer was moving at relativistic speed. *TWs form the basis of novel, low-cost, high-comfort, low-vision aids. Together, the applicants have the expertise to realise this wide-ranging project: DR is a world leader in micro-machining, enabling us to manufacture TW devices. GL and JG's ophthalmology and commercialisation expertise places us ideally to develop novel low-vision aids. We are also experts in pixellated ray optics (JC), relativity (MH, NG), mathematical physics (CW), and outreach (MH). We are applying for funding now to enable us to produce demonstrators of TW devices, illustrating the wide applicability of our technology, evaluating the limitations and quality of such devices, and investigating the production methods required for this new class of optical instrumentation.
more_vert
chevron_left - 1
- 2
chevron_right