Powered by OpenAIRE graph
Found an issue? Give us feedback

Depart for Energy Security and Net Zero

Depart for Energy Security and Net Zero

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/Y010078/1
    Funder Contribution: 15,507,700 GBP

    The UK is facing an energy crisis on three fronts: climate change, energy security, and affordability. This challenge requires a fundamental change in our society, to enable a deep energy demand reduction and wide use of low-carbon technologies, supported by policy, businesses and the public alike. Energy demand reduction is in fact fundamental so that we can improve energy security, reduce household energy bills and address climate change. Research has shown that reducing energy use could help meet half of the required emissions reductions we need by 2050 to become a Net Zero society. While this poses a challenge, it also provides an opportunity for the UK to become a global leader in energy demand reduction, and associated research. The Energy Demand Research Centre (EDRC) develops the next phase of energy demand research in the UK, building on previous research and working closely with academic and non-academic partners. Our work will inform and inspire energy demand reductions that support an affordable, comfortable and secure Net Zero society. Our research programme cuts across different sciences (e.g. engineering and social) and sectors (e.g. buildings, transport and industry). We study which energy demand solutions can be delivered in a flexible and equitable manner and at which locations, taking into consideration issues such as local housing stock and transport links, skills base and governance models. We aim to deliver impactful research on energy demand that produces actionable solutions for industry, policy makers, practitioners and charities.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z533130/1
    Funder Contribution: 414,947 GBP

    SuperAIRE aims to establish a world-leading network connecting academia, industries, and policymakers across the spectrum of artificial intelligence (AI) for renewable energy (RE), particularly wind, solar, marine, and bio energy. This includes generation, storage, transmission/distribution and demand side management. These represent most of the research areas in the UKRI's Energy and Decarbonisation theme. With SuperAIRE, we aim to create the conditions in which AI for RE can be promoted much more rapidly than at present to boost the development and deployment of RE. We will not only exploit the transformative power of AI in different RE subsectors but also address common challenges and optimise performance across the RE ecosystem. Supported by a broad partnership currently with 30 partners across industry (23), leading R&I organisations (5), and policymakers (2), we will incubate a Supergen AI+RE research community seizing the opportunity to enhance the UK's role as a global leader in the intelligent and digital transformation of the RE sector. Despite the recent growth in all subsectors, progress in essential technologies supporting the lifecycles of RE systems lags behind. AI offers strategic advantages in overcoming the limitations of traditional methods which struggle to process the increasing complexity and big data in RE systems. It will enable decision-supporting digitalisation, operational efficiency optimisation, cost-effective integration, multi-scenario adaptability, and technological cross-applicability. Though there are some current critical masses in AI for RE, the communities are facing many challenges, e.g., the fragmented nature of the landscape, subsystem isolation, and limited scope. SuperAIRE will address these challenges by enabling shared learning on common research challenges in different RE subsectors through promoting novel generic approaches complemented with refinements tailored to subsector's unique needs; forging a holistic view to facilitate system-wide AI applications; and fostering comprehensive solutions that go beyond single-task focuses to exploit the full potential of AI in enhancing the RE ecosystem. SuperAIRE will carry out diverse activities to engage with stakeholders, facilitate knowledge exchanges, catalyse community coherence, identify cross-sector opportunities, address skill gaps, support nurturing high-skill professionals with multidisciplinary expertise, and disseminate project outcomes. These activities include four key challenge workshops, bimonthly seminars, flexible funds, outreach activities, an international conference, etc. SuperAIRE will support early career researchers (ECRs) from both academia and industry via a dedicated ECR Forum, a mentoring scheme, secondment opportunities, and ECR grants. We will emphasise Equality, Diversity and Inclusion in all activities. Based on the current critical mass and emerging gaps and opportunities, we have also proposed six pre-defined research themes (RTs) to steer our Network+ activities, especially in guiding discussions, identifying challenges and opportunities, streamlining research coordination efforts, shaping a research landscape report, and developing a whitepaper. This includes RT1 Robust and trustworthy AI; RT2 Prediction and forecasting across scales; RT3 AI-powered digital twins; RT4 Intelligent control and management; RT5 Smart integration; and RT6 Intelligent robotics and autonomous systems in resource assessments, operations, and maintenance. Bolstered by strong support from project partners, we will consolidate core achievements and pursue the establishment of a new Supergen Hub in AI for RE at the end of SuperAIRE. Through these endeavours, we aim to enhance the efficiency, resilience, and affordability of RE, ultimately transforming the RE sector and addressing environmental challenges via AI.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y016114/2
    Funder Contribution: 4,469,780 GBP

    The global energy sector is facing considerable pressure arising from climate change, depletion of fossil fuels and geopolitical issues around the location of remaining fossil fuel reserves. Energy networks are vitally important enablers for the UK energy sector and therefore UK industry and society. Energy networks exist primarily to exploit and facilitate temporal and spatial diversity in energy production and use and to exploit economies of scale where they exist. The pursuit of Net Zero presents many complex interconnected challenges which reach beyond the UK and have huge relevance internationally. These challenges vary considerably from region to region due to historical, geographic, political, economic and cultural reasons. As technology and society changes so do these challenges, and therefore the planning, design and operation of energy networks needs to be revisited and optimised. Electricity systems are facing technical issues of bi-directional power flows, increasing long-distance power flows and a growing contribution from fluctuating and low inertia generation sources. Gas systems require significant innovation to remain relevant in a low carbon future. Heat networks have little energy demand market share, although they have been successfully installed in other northern European countries. Other energy vectors such as Hydrogen or bio-methane show great promise but as yet have no significant share of the market. Faced with these pressures, the modernisation of energy networks technology, processes and governance is a necessity if they are to be fit for the future. Good progress has been made in de-carbonisation in some areas but this has not been fast enough, widespread enough across vectors or sectors and not enough of the innovation is being deployed at scale. Effort is required to accelerate the development, scale up the deployment and increase the impact delivered.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y016114/1
    Funder Contribution: 5,334,580 GBP

    The global energy sector is facing considerable pressure arising from climate change, depletion of fossil fuels and geopolitical issues around the location of remaining fossil fuel reserves. Energy networks are vitally important enablers for the UK energy sector and therefore UK industry and society. Energy networks exist primarily to exploit and facilitate temporal and spatial diversity in energy production and use and to exploit economies of scale where they exist. The pursuit of Net Zero presents many complex interconnected challenges which reach beyond the UK and have huge relevance internationally. These challenges vary considerably from region to region due to historical, geographic, political, economic and cultural reasons. As technology and society changes so do these challenges, and therefore the planning, design and operation of energy networks needs to be revisited and optimised. Electricity systems are facing technical issues of bi-directional power flows, increasing long-distance power flows and a growing contribution from fluctuating and low inertia generation sources. Gas systems require significant innovation to remain relevant in a low carbon future. Heat networks have little energy demand market share, although they have been successfully installed in other northern European countries. Other energy vectors such as Hydrogen or bio-methane show great promise but as yet have no significant share of the market. Faced with these pressures, the modernisation of energy networks technology, processes and governance is a necessity if they are to be fit for the future. Good progress has been made in de-carbonisation in some areas but this has not been fast enough, widespread enough across vectors or sectors and not enough of the innovation is being deployed at scale. Effort is required to accelerate the development, scale up the deployment and increase the impact delivered.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.