Powered by OpenAIRE graph
Found an issue? Give us feedback

Doosan Babcock Power Systems

Doosan Babcock Power Systems

13 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W001136/1
    Funder Contribution: 1,915,360 GBP

    The international offshore energy industry is undergoing as revolution, adopting aggressive net-zero objectives and shifting rapidly towards large scale offshore wind energy production. This revolution cannot be done using 'business as usual' approaches in a competitive market with low margins. Further, the offshore workforce is ageing as new generations of suitable graduates prefer not to work in hazardous places offshore. Operators therefore seek more cost effective, safe methods and business models for inspection, repair and maintenance of their topside and marine offshore infrastructure. Robotics and artificial intelligence are seen as key enablers in this regard as fewer staff offshore reduces cost, increases safety and workplace appeal. The long-term industry vision is thus for a digitised offshore energy field, operated, inspected and maintained from the shore using robots, digital architectures and cloud based processes to realise this vision. In the last 3 years, we has made significant advances to bring robots closer to widespread adoption in the offshore domain, developing close ties with industrial actors across the sector. The recent pandemic has highlighted a widespread need for remote operations in many other industrial sectors. The ORCA Hub extension is a one year project from 5 UK leading universities with over 20 industry partners (>£2.6M investment) which aims at translating the research done into the first phase of the Hub into industry led use cases. Led by the Edinburgh Centre of Robotics (HWU/UoE), in collaboration with Imperial College, Oxford and Liverpool Universities, this multi-disciplinary consortium brings its unique expertise in: Subsea (HWU), Ground (UoE, Oxf) and Aerial robotics (ICL); as well as human-machine interaction (HWU, UoE), innovative sensors for Non Destructive Evaluation and low-cost sensor networks (ICL, UoE); and asset management and certification (HWU, UoE, LIV). The Hub will provide remote solutions using robotics and AI that are applicable across a wide range of industrial sectors and that can operate and interact safely in autonomous or semi-autonomous modes in complex and cluttered environments. We will develop robotics solutions enabling accurate mapping , navigation around and interaction with assets in the marine, aerial and ground environments that support the deployment of sensors for asset monitoring. This will be demonstrated using 4 industry led use cases developed in close collaboration with our industry partners and feeding directly into their technology roadmaps: Offshore Renewable Energy Subsea Inspection in collaboration with EDF, Wood, Fugro, OREC, Seebyte Ltd and Rovco; Aerial Inspection of Large Infrastructures in Challenging Conditions in collaboration with Barrnon, BP, Flyability, SLAMCore, Voliro and Helvetis; Robust Inspection and Manipulation in Hazardous Environments in collaboration with ARUP, Babcock, Chevron, EMR, Lafarge, Createc, Ross Robotics; Symbiotic Systems for Resilient Autonomous Missions in collaboration with TLB, Total Wood and the Lloyds Register. This will see the Hub breach into new sectors and demonstrate the potential of our technology on a wider scale.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J020745/1
    Funder Contribution: 756,554 GBP

    To achieve the UK's ambitious target of reducing greenhouse gas emissions by 80% by 2050, it is widely accepted that from ca. 2030 Carbon Capture and Storage (CCS) needs to be fitted to both coal and natural gas fired power plants. The flue gas characteristics of natural fired gas power plants, mostly operating in a combined cycle of gas turbine and steam turbine (NGCC), differ significantly from those from coal-fired power plants. Comparing to the flue gas of the same size coal-fired power plant, the flue gas of a NGCC power plant contains significantly lower CO2 (3-5 vs. 13-15%) and higher O2 concentrations (12-15 vs. 2-4%) and has ca. 50% higher flow rate, which make the separation of CO2 equally, if not more, challenging. The most mature PCC technology, CO2 amine scrubbing, suffers from well-know problems of high energy penalty, oxidative solvent degradation and corrosion, large capture plant footprint and high rate of water consumption. A new generation of PCC technologies for NGCC power plants which overcome these drawbacks need to developed and demonstrated in the next 10 ~ 20 years in order for their commercialisation from ca. 2030. Solid adsorbents looping technology (SALT) is widely recognised as having the potential to be a viable next generation PCC technology for CO2 capture compared to the state-of-art amine scrubbing, offering potentially significantly improved process efficiency at much reduced energy penalty, lower capital and operational costs and smaller plant footprints. The aim of this project is to overcome the performance barriers for implementing the two types of candidate adsorbent systems developed at Nottingham, namely the supported/immobilised polyamines and potassium-promoted co-precipitated sorbent system, in the solid looping technology specifically for NGCC power plants, which effectively integrates both materials and process development and related fundamental issues underpinning the technology development. The objectives are: 1. To overcome the following major specific challenges: (a) To examine and enhance the oxidative and/or hydrolytic stability of supported/immobilised polyamine adsorbents and hence to identify efficient and cost-effective management strategies for spent materials. (b) To optimise the formulation and preparation of the potassium-promoted co-precipitated sorbents for improved working capacity, reaction kinetics and regeneration behaviour at lower temperatures. (c.) To gain comprehensive understanding of to what degree and how different flue gas conditions, particularly oxygen and moisture, can impact the overall performance of adsorbent materials and related techno-economic performance of a solid looping process. 2. To produce kilogram quantities of the optimum adsorbent materials and then demonstrate their performances over repeated adsorption/desorption cycles and to establish the optimal process thermodynamics in fluidized bed testing. 3. To investigate a novel rejuvenation strategy for oxidised polyethyleneimines involving low temperature hydrogenation. 4. To conduct techno-economic studies to assess the cost advantages of the solids looping technology for NGCC power plants over amine scrubbing based on the improved adsorbent performance and optimised process configuration achieved in the project. The know-how acquired in this project will be of direct benefit to academics, CCS research community, power generation and energy industries, energy policy makers/regulators, environmental organisations and government departments such as DECC. The successful delivery of the proposed project represents a major step forward in the development and demonstration of the novel and cost-effective Solids Adsorbents Looping CO2 capture technology for NGCC power stations.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S031863/1
    Funder Contribution: 9,093,230 GBP

    The Committee on Climate Change's most recent assessment of the UK's progress towards meeting its carbon budgets shows that UK emissions are 41% below 1990 levels. The UK Government's Industrial Strategy white paper states that this has been achieved while the economy has grown by two thirds. In our journey to meeting a reduction of at least 80% compared to 1990 levels, the Committee states that we must reduce emissions by at least 3% a year. They also say that despite the above progress we are not currently on track to meet the 2023-27 carbon budget. Clearly, significant further effort and innovation is required to meet our statutory obligations in this area. In line with this, the Government's Industrial Strategy identifies Clean Growth as a grand challenge stating "We will develop smart systems for cheap and clean energy across power, heating and transport ... We will launch a new Industrial Strategy 'Prospering from the energy revolution' programme to develop world-leading local smart energy systems that deliver cheaper and cleaner energy across power, heating and transport". The Industrial Strategy also points out that Innovation in clean growth is critical for low cost, low carbon infrastructure systems, and for realising the industrial opportunities needed to deliver economic benefits. In response to this the Industrial Strategy Challenge Fund (ISCF) has launched the Prospering from the Energy Revolution (PFER) programme. It is focused on delivering (by 2022) investable and scalable local business models which use integrated approaches to deliver cleaner, cheaper, energy services for more prosperous and resilient communities. The resulting smart local energy systems should also benefit the national energy system as a whole. It also targets a ten times larger future-investment in local integrated energy systems versus business as usual in the 2020s while creating real world proving grounds to accelerate new products and services to full commercialisation. A major element of the activities is building UK leadership in integrated energy provision. To support the PFER programme, UKRI launched a call to establish the Energy Research Research Consortium (EnergyREV) to support this journey. A workshop was held in Birmingham to form and shape the consortium and to initiate the development of this proposal. The resulting EnergyREV consortium is diverse and highly multidisciplinary, incorporating 88% of the researchers who were selected for the workshop. EnergyREV will work with the Energy Systems Catapult to enable and inform demonstrators and demonstrator design projects (funded by the PFER programme) through their lifetime; undertaking analysis and evaluation, building and driving best practice and, leading knowledge exchange through national and international engagement with policy, academic and industrial communities. Further to this, EnergyREV has shaped and defined a strategic programme of applied interdisciplinary research which aims to achieve significant outputs in the areas of whole energy systems and smart local energy systems. This will inform future energy investment by companies and Government. It will coordinate and integrate existing UK world-class knowledge, research teams and facilities, and through this provide advice, research and innovation support to help ensure the success of the PFER programme.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022996/1
    Funder Contribution: 5,771,300 GBP

    EPSRC Centre for Doctoral Training in Resilient Decarbonised Fuel Energy Systems Led by the University of Nottingham, with Sheffield and Cardiff SUMMARY This Centre is designed to support the UK energy sector at a time of fundamental change. The UK needs a knowledgeable but flexible workforce to deliver against this uncertain future. Our vision is to develop a world-leading CDT, delivering research leaders with broad economic, societal and contextual awareness, having excellent technical skills and capable of operating in multi-disciplinary teams covering a range of roles. The Centre builds on a heritage of two successful predecessor CDTs but adds significant new capabilities to meet research needs which are now fundamentally different. Over 80% of our graduates to date have entered high-quality jobs in energy-related industry or academe, showing a demand for the highly trained yet flexible graduates we produce. National Need for a Centre The need for a Centre is demonstrated by both industry pull and by government strategic thinking. More than forty industrial and government organisations have been consulted in the shaping and preparation of this proposal. The bid is strongly aligned with EPSRC's Priority Area 5 (Energy Resilience through Security, Integration, Demand Management and Decarbonisation) and government policy. Working with our partners, we have identified the following priority research themes. They have a unifying vision of re-purposing and re-using existing energy infrastructure to deliver rapid and cost-effective decarbonisation. 1. Allowing the re-use and development of existing processes to generate energy and co-products from low-carbon biomass and waste fuels, and to maximise the social, environmental and economic benefits for the UK from this transition 2. Decreasing CO2 emissions from industrial processes by implementation of CCUS, integrating with heat networks where appropriate. 3. Assessing options for the decarbonisation of natural gas users (as fuel or feedstock) in the power generation, industry and domestic heating system through a combination of hydrogen enhancement and/or CO2 capture. Also critical in this theme is the development of technologies that enable the sustainable supply of carbon-lean H2 and the adoption of H2 or H2 enriched fuel/feedstock in various applications. 4. Automating existing electricity, gas and other vector infrastructure (including existing and new methods of energy storage) based on advanced control technologies, data-mining and development of novel instrumentation, ensuring a smarter, more flexible energy system at lower cost. Training Our current Centre operates a training programme branded 'exemplary' by our external examiner and our intention is to use this as solid basis for further improvements which will include a new technical core module, a module on risk management and enhanced training in inclusivity and responsible research. Equality, Diversity and Inclusion Our current statistics on gender balance and disability are better than the EPSRC mean. We will seek to further improve this record. We are also keen to demonstrate ED&I within the Centre staff and our team also reflects a diversity in gender, ethnicity and experience. Management and Governance Our PI has joined us after a career conducting and managing energy research for a major energy company and led development of technologies from benchtop to full-scale implementation. He sharpens our industrial focus and enhances an already excellent team with a track record of research delivery. One Co-I chairs the UoN Ethics Committee, ensuring that Responsible Innovation remains a priority. Value for Money Because most of the Centre infrastructure and organisation is already in place, start-up costs for the new centre will be minimal giving the benefit of giving a new, highly refreshed technical capability but with a very low organisational on-cost.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.