
Forschungszentrum Julich GmbH
Forschungszentrum Julich GmbH
2 Projects, page 1 of 1
assignment_turned_in Project2022 - 2024Partners:University of Glasgow, University of Glasgow, Forschungszentrum Julich GmbH, Forschungszentrum Jülich GmbH, Forschungszentrum Julich GmbHUniversity of Glasgow,University of Glasgow,Forschungszentrum Julich GmbH,Forschungszentrum Jülich GmbH,Forschungszentrum Julich GmbHFunder: UK Research and Innovation Project Code: EP/W033135/1Funder Contribution: 217,826 GBPIn order to produce green hydrogen at scale from the electrolysis of water, new electrolysers that are more compatible with intermittent renewably-generated power must be developed. This is because existing electrolysers suffer from two key drawbacks which hampers their adoption for green hydrogen production driven by renewable power sources. Firstly, existing electrolysers do not handle intermittent power inputs effectively. Renewable power sources are by definition intermittent (sometimes the sun shines, and sometimes it doesn't, and when it is shining its intensity on the ground is constantly varying). If connected directly to a solar panel for example, a conventional electrolyser would be operating in constant stop-start mode. This accelerates the degradation of expensive components in the electrolyser and also leads to the production of dangerous mixtures of the hydrogen and oxygen products of electrolysis. As such, conventional electrolysers require significant power management apparatus in order to work safely using renewable power inputs. Without such power management systems, conventional electrolysers would produce dangerous mixtures of hydrogen and oxygen when coupled directly to renewable power sources, which hitherto has been a major barrier to the realisation of a hydrogen production economy driven by renewable power. The second major drawback of conventional systems is their high operational and maintenance costs. State-of-the-art electrolysers contain expensive membranes to try and keep the hydrogen and oxygen products separate, but these degrade rapidly during operation and must be replaced regularly. This adds considerable cost and complexity to long-term electrolyser operation. In this proposal, we will build on the concept of "decoupled electrolysis" to develop a system that can use solar power directly for the electrolysis of water. A decoupled electrolysis approach has the potential to solve both of the key issues preventing greater uptake of electrolysis for green hydrogen production. Indeed, in our preliminary results, we have shown that decoupled electrolysis allows the effective and safe use of power inputs characteristic of renewable sources under conditions where a conventional electrolyser produced a hazardous mixture of hydrogen and oxygen. In contrast, the gases produced by the decoupled system were well within regulatory limits in terms of mixed gas content. We were also able to show that membrane degradation was significantly reduced in a decoupled system relative to a conventional system, suggesting that decoupled electrolysers should require less downtime and incur lower maintenance costs than conventional "coupled" electrolysers. Both of these features could be expected to make electrolysis of water to produce green hydrogen significantly more practical and cost-effective. By leveraging the ability of decoupled electrolysis to allow hydrogen and oxygen generation to take place in separate places, at separate times and at rates that are not connected to each other, we aim in this project to demonstrate the production of pure hydrogen at pressure driven by sunlight. This will open the door to future scale-up of these systems for safe and efficient production of zero-carbon hydrogen driven by renewables.
more_vert assignment_turned_in Project2022 - 2027Partners:Imperial College London, Plansee Composite Materials GmbH, BU, University of Huddersfield, University of Huddersfield +16 partnersImperial College London,Plansee Composite Materials GmbH,BU,University of Huddersfield,University of Huddersfield,Tokamak Solutions UK Ltd,QMUL,University of Oxford,Forschungszentrum Julich GmbH,TOKAMAK ENERGY LTD,Bangor University,Tokamak Energy Ltd,CCFE/UKAEA,UNSW,Forschungszentrum Jülich GmbH,University New South Wales at ADFA,University Of New South Wales,Plansee Composite Materials GmbH,Queen Mary University of London,EURATOM/CCFE,Forschungszentrum Julich GmbHFunder: UK Research and Innovation Project Code: EP/W008025/1Funder Contribution: 1,115,680 GBPThe process powering the sun can be harnessed as clean and safe fusion energy. Progress in fusion could be accelerated by shrinking the size and cost of reactors and the UK Government has recently announced £220 million to develop such smaller reactors. However, for them to operate continuously for several decades, certain parts of the reactor must be shielded from high energy particles. With currently available shielding materials, these parts will begin to degrade within a matter of weeks or months. My programme of work will develop more efficient shielding materials so that these reactors can operate on a continual basis. Conventional shields use heavy atoms, which reflect the lighter particles; similar to how a ping-pong ball might bounce back off a snooker ball. My research is based on a hybrid approach, combining heavier elements with lighter ones, which instead absorb and dissipate the particle's energy; think now of similarly weighted balls colliding, like a break in snooker. The approach has been proven in theory, but I must now turn this into reality by fabricating and testing real engineering materials. In doing so I will work closely with the UK's leading fusion engineering company, Tokamak Energy, and the UK Atomic Energy Authority, both of whom seek to build energy-producing reactors within the next 10-20 years. My first aim is to fabricate these materials. Because they are very hard and do not melt easily, I will use similar methods to the way other hard materials are made, such as those within a household drill-bit. These are made by compressing powders together at high temperature so that the powders fuse to form a solid material. I will test the properties of the materials like their strength. As part of this I will seek to understand how the geometrical arrangement of the atoms within the material - the so-called "microstructure" - affects these properties. The second aim will be to understand how these materials degrade in the environment of the fusion reactor. They will be subjected to extreme heating, which in some areas of the reactor is similar to what is experienced in a rocket engine. I will test how the material's mechanical strength degrades at these temperatures, just like steel is softened in a blacksmith's furnace to become malleable. At the same time, the materials will also be bombarded by high energy particles in the reactor. This tends to jumble-up the arrangement of the atoms, which can make the materials more brittle; in the same way that when you bend a paperclip back-and forth, it eventually snaps. To test this, I will use specialist particle beam facilities to simulate the damage process. Because the damage only occurs on a small scale (about a tenth the thickness of a human hair) I will use very high-power microscopes to observe the jumbling-up process. I will also perform small-scale mechanical tests on the damaged areas to understand how the jumbling-up effects strength. To interpret these tests, I will work with experts in computer modelling, who can simulate individual "atomic jumps" to work out which sorts of jumps are responsible for the damage. The final aim of the fellowship is to optimise the material's atomic arrangement to improve its damage tolerance. To achieve this, I will engineer the material's building blocks by firstly adding a cement-like layer between blocks, and secondly by flattening the blocks like pancakes. Such engineering is found in nature, where sea-snail shells are built from thinly stacked layers of relatively brittle chalk-like ceramics, with a gluey substance in between. So, when the shell is struck by predators, cracks either stop in the glue, or deflect between the layers of chalk, and the snail survives. By bringing this approach, my work will enable the materials in fusion power plants to withstand even more extreme environments and thus enable them to operate for longer, which will in turn decrease the cost of fusion energy.
more_vert