
Orsted
Orsted
10 Projects, page 1 of 2
assignment_turned_in Project2021 - 2025Partners:Imperial College London, Orsted, NVIDIA Limited (UK)Imperial College London,Orsted,NVIDIA Limited (UK)Funder: UK Research and Innovation Project Code: MR/V024086/1Funder Contribution: 1,178,280 GBPImaging methods are used to obtain visual representations of objects that are otherwise invisible to the naked eye. The physical principles in which imaging methods are based are common across disciplines and, hence, can be adapted. Here I propose to lead an inter-disciplinary project that will focus on obtaining images of medical and geophysical targets that are traditionally difficult to image with ultrasound or seismic waves, such as the brain. Rapid brain imaging is central to the diagnosis and treatment of stroke and other acute neurological conditions, but existing methods for imaging the brain (mainly X-rays and magnetic resonance imaging) require large, immobile, high-power instruments that are near-impossible to deploy outside specialised environments. I will create a device that can be applied to any patient, at any time and in any place by exploiting advances that have already revolutionised imaging in geophysics and using ultrasound waves transmitted across the head. In particular, I will adapt an imaging algorithm known as full-waveform inversion to transform the recorded ultrasound data into the first highly detailed image of an adult brain with ultrasound, and with a much higher resolution than those obtained with conventional ultrasound. To achieve this goal, I will design a safe and suitable device for its application to healthy volunteers, and I will use the recorded data and full-waveform inversion conveniently adapted. This will require solving several technical aspects, such as accounting for involuntary movement due to breathing, obtaining the characteristics of the skull from the data and accelerating the computations on graphics processing units. The success of this project would represent a major breakthrough in brain imaging and would be particularly relevant to improve the survival rate and wellbeing of patients with acute stroke, which is the second-largest cause of death and acquired adult disability. Then, I will study the capability of ultrasound full-waveform inversion for breast cancer detection, in particular for patients with dense breasts in which traditional mammography fails, and for bone imaging - in particular for detecting osteoporosis and fractures. To achieve these goals, I will develop and validate in the laboratory new full-waveform inversion algorithms to recover multiple characteristics of biological tissues and I will use low-frequency ultrasound that easily penetrates bone. Next, I will investigate the potential of full-waveform inversion of ultrahigh-frequency seismic data, a particular type of seismic waves that travel small distances but can interact with small objects, in order to characterise the first 100 meters of the subsurface in offshore wind farms. This new approach will be particularly useful to characterise vast areas of the subsurface and locate adequate regions for the installation of wind turbines to reduce maintenance costs. Finally, I will evaluate different strategies to obtain subsurface images over time with full-waveform inversion of seismic data at carbon dioxide storage sites, which play a crucial role in reducing the carbon footprint. This will help engineers better understand how carbon dioxide reservoirs evolve and how to make them safer and more efficient.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::215fe1f8c8e207151bdc9572248c4c44&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::215fe1f8c8e207151bdc9572248c4c44&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Cathie Associates Limited, Global Offshore, Global Offshore, Orsted A/S, Durham University +7 partnersCathie Associates Limited,Global Offshore,Global Offshore,Orsted A/S,Durham University,Orsted,The Crown Estate,Cathie Associates Limited,Lloyd's Register Foundation,LR IMEA,Durham University,Crown Estate (United Kingdom)Funder: UK Research and Innovation Project Code: EP/W000970/1Funder Contribution: 464,312 GBPOffshore Wind (OSW) is critical for the UK's economy and energy security. It is also an area of huge investment, for example £14bn has been committed up to the end of 2021 for new OSW sites - the 4th largest construction programme in the UK. Beyond this, the UK's current 2030 OSW installed capacity targets will require £48bn of investment and provide direct employment for 27,000 people. Despite the growing maturity of the OSW sector, certain elements of the installed infrastructure remain problematic. Principally, problems associated with subsea power cables that transport and distribute the electricity generated offshore in wind turbine generators to the onshore transmission system currently account for 75% of the cost of all insurance claims and faults typically take 100+ days to rectify. This leads to breaks in supply and loss of revenue for the wind farm operator which in the long term can lead to longer payback periods and reduced investment elsewhere in their renewables portfolio. In shallow waters these cables must be protected from anchors and fishing gear and the primary protection method is to bury the cable below the seabed. The cable burial depth is a compromise between economic cost of burial (going deeper takes longer, requires larger ships and may require more complex operations) and risk to the cable being damaged by anchors/fishing gear penetrating the seabed. Within this context, anchor-cable interactions currently account for 85% of power cable failures. The planned rapid expansion of offshore wind around the UK - installed capacity increasing 7.5 times over the next 30 years - will require new cable installations within some of the busiest shipping/fishing waters in the world and it is essential that these new cables are installed at the appropriate depth. However, the industry currently lacks appropriate scientific tools to determine anchor penetration depths in different soil conditions. Instead they use simple look-up tables based on very broad descriptive classifications of the soils on the seabed that basically split the huge spectrum of real soil conditions into two categories - soft or hard. This approach has been shown to be highly conservative in some soils leading to unnecessarily deep (and costly) burial. However, it is clearly non-conservative in other conditions as anchor-cable interactions dominate cable failures. This proposal will tackle the lack of sound anchor penetration models head on and, through physical testing and computational modelling, develop a toolkit to assess anchor penetration in different soil conditions. This anchor penetration prediction tool will be based on the site investigation data typically available along cabling routes and avoid the use of oversimplistic look-up tables. Its development will be guided by an industrial project steering group made up of key parties from the OSW sector. Crucially, this innovative anchor penetration model will be calibrated and validated using a geodatabase comprising actual site investigation data. Model performance will be assessed against proven, demonstrable ground conditions and therefore will not rely on hypothetical ground conditions which can be oversimplified using current cable burial assessment techniques (e.g. descriptive single-type soils that do not change with burial depths, as opposed to more complex, multi-layered soil types). In addition to the anchor penetration predictive tool, a number of spatial mapping layers (specific to the UK Continental Shelf) will be created, derived from the tool application to known ground conditions across the UK seafloor. These mapping layers will be made openly available, and are anticipated to feed into high-level spatial planning decisions at project concept stage. In summary, this project will provide an industry usable anchor penetration model allowing the OSW sector to answer the key cable burial question - how deep is deep enough?
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::04dcca917ce8ea1e9b46d737c962204f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::04dcca917ce8ea1e9b46d737c962204f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:UWA, Orsted A/S, University of Bristol, NGI, GDG +15 partnersUWA,Orsted A/S,University of Bristol,NGI,GDG,Trinity College Dublin, Ireland,University of Bristol,UNIBO,Lloyd's Register Foundation,LR IMEA,Norwegian Geotechnical Institute,Orsted,Fugro GEOS Ltd,Gavin & Doherty Geosolutions,Fugro (United Kingdom),University of Western Australia,UCD,University of California Davis,Otherlab Ireland Limited,Otherlab Ireland LimitedFunder: UK Research and Innovation Project Code: EP/W006235/1Funder Contribution: 1,203,430 GBPGeotechnical infrastructure fundamentally underpins the transport, energy and utility networks of our society. The design of this infrastructure faces increasing challenges related to construction in harsher or more complex environments and stricter operating conditions. Modern design approaches recognise that the strength and stiffness of ground, and therefore the safety and resilience of our infrastructure, changes through time under the exposure to in-service loading - whether from trains, traffic, waves, currents, seasonal moisture cycles, redevelopment of built structures or nearby construction in congested urban areas. However, advances in geotechnical analysis methods have not been matched by better tools to probe and test the ground in situ, in a way that represents realistic real-world loading conditions. This research will improve current geotechnical site investigation practice by developing ROBOCONE - a new site investigation tool for intelligent ground characterisation - and its interpretative theoretical framework - from data to design. ROBOCONE will combine modern technologies in robotic control and sensor miniaturisation with new theoretical analyses of soil-structure interaction. Breaking free from the kinematic constraints of conventional site investigation tools, ROBOCONE will feature three modular sections which can be remotely actuated and controlled to impose horizontal, vertical and torsional kinematic mechanisms in the ground closely mimicking loading and deformation histories experienced during the entire lifespan of a geotechnical infrastructure. The device development will be supported by new theoretical approaches to interpret ROBOCONE's data to provide objective and reliable geotechnical parameters, ready for use in the modern "whole-life" design of infrastructure. This research will provide a paradigm shift in equipment for in situ ground characterisation. ROBOCONE will enable the cost-effective and reliable characterisation of advanced soil properties and their changes with time directly in-situ, minimising the need for costly and time-consuming laboratory investigations, which are invariably affected by sampling and testing limitations. Geotechnical in-situ characterisation will be brought into step with modern, resilient and optimised geotechnical design approaches.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ab0428a42e1c95fdbd1c0050ad5e653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ab0428a42e1c95fdbd1c0050ad5e653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:University of Dundee, Lloyd's Register Foundation, Cathie Associates Limited, Norwegian Geotechnical Institute, Orsted +16 partnersUniversity of Dundee,Lloyd's Register Foundation,Cathie Associates Limited,Norwegian Geotechnical Institute,Orsted,Heerema Marine Contractors,Orsted A/S,EDF,Cathie Associates Limited,Universitat Politècnica de Catalunya,Imperial College London,Électricité de France (France),NGI,Roger Bullivant Ltd,University of Oxford,TU Delft,UPC,Hereema Marine Contractors Nederland SE,Lloyd's Register Foundation,Lloyd's Register Foundation,Roger Bullivant LtdFunder: UK Research and Innovation Project Code: EP/W00013X/1Funder Contribution: 310,664 GBPNever in human history has there been such an urgent need for a step-change in energy production. With the goal of achieving a carbon neutral state by 2050, the UK is the first major economy to pass net zero emissions laws and lead the world by example. In answer to this impellent necessity, offshore renewables -particularly wind- are expanding at a rapid pace. Many of UK's offshore wind turbines (OWT) developments will need to be fixed or anchored in chalk, a highly variable soft rock that covers much of Northern Europe and is widespread under the North and Baltic Seas. In most cases that will be achieved by pushing or driving large steel piles into this soft rock under the seabed. That installation process is difficult because of the unprecedented scale of some of these foundations (monopiles), because the conditions of the chalk at the interface modified by installation are poorly known, the mechanical behaviour of chalk is complex and because working offshore leaves little room for error. Apart from its inherent difficulty, the installation process essentially modifies the chalk around the foundation. As a result of those changes, there are still some important gaps in our ability to predict properties that are basic for safe and efficient operation, such as the initial and the evolved axial capacity and lateral stiffness of monopiles through their in-service lifetime characterised by complex wind and wave cyclic load history. The research proposed will improve the efficiency and cost effectiveness of piles driven in soft rocks to support the further development of renewable energy structures offshore through rigorous numerical and experimental modelling. The key aims are to improve pile drivability assessment for open-ended piles supporting OWT and to quantify the effects of installation on long-term in-service performance of OWT foundations. The main deliverable will be to develop practical tools to incorporate these effects within engineering analysis and design suitable for both onshore and offshore applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d50477a9a617b26d1f3a56b097c41b8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d50477a9a617b26d1f3a56b097c41b8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Orsted A/S, Brook Green Innovations Ltd, University of Sheffield, Oxto Energy, Orsted +18 partnersOrsted A/S,Brook Green Innovations Ltd,University of Sheffield,Oxto Energy,Orsted,University of Sheffield,Siemens Gamesa Renewable Energy,Highview Power Storage,Siemens Gamesa Renewable Energy,Modo Energy,Community Windpower,Highview Power Storage (United Kingdom),Arenko,Brook Green Innovations Ltd,Modo Energy Ltd,SIEMENS PLC,Arenko Group,Siemens plc (UK),Community Windpower,[no title available],Oxto Energy,EC-OG Engineering Ltd,EC-OG Engineering LtdFunder: UK Research and Innovation Project Code: EP/W02764X/1Funder Contribution: 1,207,770 GBPIncreased energy storage storage is needed on the electrical network to support high levels of variable renewable electricity such as wind and solar to enable us to reach our net-zero goals. The UK network currently has 5.3GW of energy storage of which 1.3GW is battery energy storage and this is expected to grow by at least 8GW by 2030. However, this alone does not meet the estimated required capacity, we therefore need to use the storage that we have optimally, for example, the location of storage and when we use it is critical to avoid congestion on the network. We also need to promote the installation of different types of storage that can operate over different time scales so that for example excess generation in one season can be used in the next. The aim of the project is to determine how different distributed energy storage assets, of different sizes and technologies, can be integrated into the grid as part of a whole-system solution to enable adaptability, flexibility and resilience. The project will investigate where and how assets are connected to the grid, how they are controlled and what policies and market conditions are required to meet our storage requirements. The research will be carried out across 5 collaborating institutions with the work underpinned by experiments using operational grid-scale storage demonstrators operated within the consortium. The outputs will include: - Recommendations for optimal planning and scheduling of distributed storage under different policy and market conditions including incentives/regulation of locational deployment - The impacts of different levels of coordination of distributed storage across location, scale, and markets - Demonstrations of practical, scalable solutions for the coordinated control of storage assets and other sources of flexibility - A roadmap that describes the decision points and options for the energy system as distributed energy storage grows according to different scenarios to 2035.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f8d9d7964b47538da63089023bd52a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f8d9d7964b47538da63089023bd52a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right