Powered by OpenAIRE graph
Found an issue? Give us feedback

DLR Oberpfaffenhofen

DLR Oberpfaffenhofen

20 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: NE/G005109/1
    Funder Contribution: 304,695 GBP

    BACKGROUND In the last fifty years aviation has experienced very rapid development, with air traffic recording an almost 9% yearly growth rate in the first half of the period (approximately 2.5 times the average GDP growth rate) and approximately 5% yearly growth rate in the second half of the period. According to the most recent estimates, aviation climatic impact amounts to 2-8% of the global radiative forcing associated with climate change. As a result of the expected increase in air traffic in the next decades, the relative importance of air traffic on climate change is expected to increase significantly. THE NEED FOR COSIC AND AIMS One of aviation's largest effects is likely to be that due to contrails and their spreading into cirrus. This could be considerably larger than the effects of increased CO2 emissions but this contrail-cirrus remains unquantified. Previous estimates of combined aviation induced cloudiness suggest that spreading contrails could be important. However, these studies rely on correlating air traffic with cirrus coverage and have large uncertainties and methodological problems. The ultimate aim of this proposal is, for the first time, to build a physically based parameterisation of contrail-cirrus - to determine its role in climate change, testing whether it has a larger role than line-shaped contrails. To achieve this ultimate goal, observations of contrail properties and their spreading will be made with FAAM (research aircraft) flights and satellite observations. Then a hierarchy of models will be used to develop a contrail-cirrus cloud parameterisation within the Met Office Unified Model, working closely with both the Met Office and the Deutsches Zentrum für Luft- und Raumfahrt (DLR) partners, and constraining the developed parameterisations by the observations made by University of Manchester and Met Office researchers during the aircraft campaign. WORKPLAN WP1 will perform an aircraft campaign making 6 'case study' observations of spreading contrail during 2009 in an area out of the flight corridor to the southwest of the UK . We will use a novel 'figure of eight' flight pattern to make and monitor our own contrail and, in particular, track its evolution into cirrus. We will measure its radiative forcing by flying cross sections above and below and by monitoring from space using the GERB and SEVIRI geostationary instruments. We will make use of state-of-the-art observations made by the Met Office and University of Manchester groups. We will also rely on ice supersaturation forecasts supplied by the University of Reading group using European Centre forecasts. WP2 will use idealised modelling data supplied by DLR and the detailed observations made during WP1 to simulate specific case studies observed during the aircraft campaign. Particular attention will be made to the later stages of contrail lifecycle. WP3 will again make use of idealised DLR data and our own (and others) case-study data to build a prognostic contrail-cirrus scheme for the Met Office Unified Model. WP4 will employ the Unified Model with this parameterisation to predict the radiative forcing and climate impact from contrail-cirrus, comparing its climate impact to that estimated for line-shaped contrails.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P031277/1
    Funder Contribution: 692,318 GBP

    The vision for this research is to develop a novel toolset for flight simulation fidelity enhancement. This represents a step-change in simulator qualification, is well-timed making a significant contribution to the UoL initiated NATO STO AVT-296-RTG activity and will have an immediate impact through engagement with Industry partners. High fidelity modelling and simulation are prerequisites for ensuring confidence in decision making during aircraft design and development, including performance and handling qualities estimation, control law development, aircraft dynamic loads analysis, and the creation of a realistic piloted simulation environment. The ability to evaluate/optimise concepts with high confidence and stimulate realistic pilot behaviour are the kernels of quality flight simulation, in which pilots can train to operate aircraft proficiently and safely and industry can design with lower risk. Regulatory standards such as CS-FSTD(H) and FAA AC120-63 describe the certification criteria and procedures for rotorcraft flight training simulators. These documents detail the component fidelity required to achieve "fitness for purpose", with criteria based on "tolerances", defined as acceptable differences between simulation and flight, typically +/- 10% for the flight model. However, these have not been updated for several decades, while on the military side, the related practices in NATO nations are not harmonised and have often been developed for specific applications. Methods to update the models for improved fidelity are mostly ad-hoc and, without a strong scientific foundation, are often not physics-based. This research will provide a framework for such harmonisation removing the barriers to adopting physics-based flight modelling and will create new, more informed, standards. In this research two aspects of fidelity will be tackled, predictive fidelity (the metrics and tolerances in the standards) and perceptual fidelity (pilot opinion). The predictive fidelity aspect of the research will use System Identification techniques to provide a systematic framework for 'enhancing' a physics-based simulation model. The perceptual fidelity research will develop a rational, novel process for task-specific motion tuning together with a robust methodology for capturing pilots' subjective assessment of the overall fidelity of a simulator. Extensive use will be made of flight simulation and real-world flight tests throughout this project in both the predictive and perceptual fidelity research.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K017551/1
    Funder Contribution: 323,467 GBP

    Noise and emissions (carbon dioxide and nitrogen oxides) from jet engines are a major issue, with public expectations of quieter and cleaner skies, despite the rapid growth in commercial air transportation. Research on aircraft noise is of major importance to many stakeholders in the UK. London Heathrow enforces some of the most stringent noise regulations of any of the world's major city airports. Also Rolls-Royce, one of the UK's premier engineering companies, currently has a 30% share of the civil-engine market, making it the world's second largest supplier of civil aircraft engines. In addition to the economic benefits, reducing aircraft noise and emissions also benefits society, improving the quality of life, and in some instances the health, of people living and working near airports. One of the principal aims in the ACARE (Advisory Council for Aeronautics Research in Europe) 2020 vision is a 50% reduction in perceived average noise levels. Notwithstanding the significant investment in aircraft noise research in Europe and the U.S. during the last two decades, this vision will still require considerable technological advances to make airplanes substantially quieter. The key application of the majority of research in aeroacoustics is aircraft noise. Spectral broadening refers to the scattering of tonal sound fields by turbulence, whereby the interaction of the sound with a random, time-varying, turbulent flow results in power lost from the tone and distributed into a broadband field around the tone frequency. When the proportion of scattered power is small relative to the power that remains in the tone, this is termed "weak scattering". However, spectral broadening can lead to the disappearance of the tone itself, replaced by a broadband hump: this is termed "strong scattering". The advent of the high-bypass-ratio turbofan engine led to a significant step-change reduction in noise from jet engines, principally due to lower levels of jet noise. A consequence of this reduction in jet noise was that, relative to other sources, fan, core and turbine noise became more important noise sources. In turbofan engines, spectral broadening occurs due to the aft radiated sound propagating through the exhaust jet shear layers. This affects the radiation of turbine tones, and to a lesser extent fan tones. It is likely that in order to generate another step-change reduction in aircraft engine noise, radical changes to the engine's design will be required. Currently advanced open-rotor contra-rotating propeller concepts are being reappraised due to the significant fuel efficiency savings they can provide. However open-rotors generate a multitude of tones, and historically they have been perceived as being noisier compared to turbofan engines. Open-rotor noise testing conducted in free-jet wind-tunnels can be affected by the presence of the wind-tunnel jet shear layers through which the sound propagates because open-rotors generate highly protrusive tonal sound fields. The shear layers cause spectral broadening of the tones. The development of robust, validated prediction methods (theoretical and computational) will be a key output from this research. The capability to predict strong scattering is the key aim; currently there are no prediction methods available to predict strong scattering of tones from turbofan and open-rotor aircraft engines. The acquisition of a model-scale experimental database of measurements of spectral broadening obtained in the laboratory will be the other key output from this research. There is currently no such database available; the data will be used for validation purposes, as well as to improve our understanding of the scattering phenomenon. In summary, the research project will be the first comprehensive study on spectral broadening in aeroacoustics, with key applications directly linked to noise emissions from both turbofan and open-rotor aircraft engines.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/G004358/1
    Funder Contribution: 251,245 GBP

    This research is focused on new technology development. The NERC's Technologies Theme Action Plan, has identified the area of new numerical model development as a critical area where UK skills and expertise should be developed. An important goal of NERC-funded research is 'tackling the key issue of climate change', and as such 'identifying the limitations of a particular model is an important part of stimulating further improvements, and advancing our understanding' (http://www.nerc.ac.uk/research/issues/climatechange/predict.asp). The proposed research focuses on this goal in relation to atmospheric flows. Contemporary numerical models used in the simulation of stratified rotating atmospheric flows are predominantly based on structured computational meshes, with rigid connectivity of a Cartesian grid. For some problems (e.g., hurricanes and flows in long winding valleys), mesh adaptivity has a potential to achieve solutions not obtainable by other methods. However, existing unstructured mesh models are still in their infancy compared to both established structured-grid codes and state-of-the-art engineering advancements with unstructured meshes. Furthermore, their implementation tends to emphasize small-scale convective phenomena and emergency responses, which are relatively easy to model because of the large noise-to-signal ratio, and because of the proximity of events to the excitation region. Insofar as the full-range of wave dynamics are concerned -- including such subtleties as wave-wave and wave-mean-flow interactions, as well as large-amplitude events occurring far from the excitation region -- the potential of unstructured-mesh technology remains unknown. In order to prove the competence and competitiveness of unstructured-mesh technology for simulating all-scale flows in the atmosphere and oceans, there is a pressing need for developing an advanced, fully non-hydrostatic model for simulating accurately rotating stratified flows in a broad range of Rossby-, Froude-, and Reynolds-number regimes. In this work we propose to develop a novel code operating on hybrid (arbitrary polyhedra) meshes, for solving a number of optional forms of non-hydrostatic equations of atmospheric fluid dynamics with flexible mesh-adaptivity capabilities. The proposed model will mirror stratified, rotating turbulence-simulation capabilities of the structured-grid model EULAG (EUlerian/LAGrangian), the proven record of which includes direct and large-eddy simulations of complex fluid problems from laboratory-, to meso-, up to the planetary scale. Additionally, we shall perform rigorous studies and comparisons, by applying both the new model and EULAG to complex benchmarks and research problems combining wave dynamics and turbulence generation on scales relevant to weather, climate and extreme events. To the best of our knowledge, the proposal offers the first ever in-depth study of the relative performance of structured and unstructured/adapted meshes for stratified turbulent flows which involve practical computations of inertia-gravity-wave dynamics. Deliverables: 1) Novel technology --- a high-resolution non-hydrostatic unstructured mesh based model. 2) Method validation and first ever demonstrations of unstructured meshes on advanced test cases, which will deliver information about the applicability of such meshes to realistic atmospheric problems. 3) Quantitative study identifying performance properties of the mesh adaptivity technologies.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/N000846/1
    Funder Contribution: 381,686 GBP

    In this research programme, planetary scientists and engineers from the University of Glasgow and the Scottish Universities Environmental Research Centre have joined forces to answer important questions concerning the origin and evolution of asteroids, the Moon and Mars. The emphasis of our work is on understanding the thermal histories of these planetary bodies over a range of time and distance scales, and how water and carbon-rich molecules have been transported within and between them. One part of the consortium will explore the formation and subsequent history of asteroids. Our focus is on primitive asteroids, which have changed little since they formed 4500 million years ago within a cloud of dust and gas called the solar nebula. These bodies are far smaller than the planets, but are scientifically very important because they contain water and carbon-rich molecules, both of which are essential to life. We want to understand the full range of materials that went to form these asteroids, and where in the solar nebular they came from. Although they are very primitive, most of these asteroids have been changed by chemical reactions that were driven by liquid water, itself generated by the melting of ice. We will ask whether the heat needed to melt this ice was produced by the decay of radioactive elements, or by collisions with other asteroids. The answer to this question has important implications for understanding how asteroids of all types evolved, and what we may find when samples of primitive asteroids are collected and returned to Earth. Pieces of primitive asteroids also fall to Earth as meteorites, and bring with them some of their primordial water, along with molecules that are rich in carbon. Many scientists think that much of the water on Earth today was obtained from outer space, and consortium researchers would like to test this idea. In order to understand the nature and volume of water and carbon that would have been delivered by meteorites, we first need to develop reliable ways to distinguish extraterrestrial carbon and water from the carbon and water that has been added to the meteorite after it fell to Earth. We plan to do this by identifying 'fingerprints' of terrestrial water and carbon so that they can be subtracted from the extraterrestrial components. One of the main ways in which this carbon was delivered to Earth during its earliest times was by large meteorites colliding with the surface of our planet at high velocities. Thus we also wish to understand the extent to which the extraterrestrial carbon was preserved or transformed during these energetic impact events. The formation and early thermal history of the moon is another area of interest for the consortium. In particular, we will ask when its rocky crust was formed, and use its impact history to determine meteorite flux throughout the inner solar system. To answer these questions we will analyse meteorites and samples collected by the Apollo and Luna missions to determine the amounts of chemical elements including argon and lead that these rocks contain. Information on the temperature of surface and sub-surface regions of Mars can help us to understand processes including the interaction of the planet's crust with liquid water. In order to be able to explore these processes using information on the thermal properties of martian rocks that will soon to be obtained by the NASA InSight lander, we will undertake a laboratory study of the effects of heating and cooling on a simulated martian surface. Hot water reaching the surface of Mars from its interior may once have created environments that were suitable for life to develop, and minerals formed by this water could have preserved the traces of any microorganisms that were present. We will assess the possibility that such springs could have preserved traces of past martian life by examining a unique high-altitude hot spring system on Earth.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.