
Touchstone Innovations
Touchstone Innovations
7 Projects, page 1 of 2
assignment_turned_in Project2015 - 2015Partners:Imperial College London, Imperial Innovations Limited, Touchstone InnovationsImperial College London,Imperial Innovations Limited,Touchstone InnovationsFunder: UK Research and Innovation Project Code: NE/N004825/1Funder Contribution: 7,855 GBPWe will identify an industry or sector specialist to act as a consultant to advise the needs within the industrial water treatment and household/consumer sectors and on the route to market. This primary market research will most importantly bring in views of various stakeholders such as water companies, government organizations, development agencies and NGOs, interested in water quality. The applicants will work alongside Imperial Innovations, drawing on their networks of contacts, to select an appropriate sector expert.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2825d8bccbb53527ea40ad2a2e62da2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2825d8bccbb53527ea40ad2a2e62da2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2014Partners:Alstom (United Kingdom), Imperial College London, Tyco Safety Products, Tyco Safety Products, Imperial Innovations Limited +4 partnersAlstom (United Kingdom),Imperial College London,Tyco Safety Products,Tyco Safety Products,Imperial Innovations Limited,SWAN,Thomas Swan (United Kingdom),ALSTOM GRID UK,Touchstone InnovationsFunder: UK Research and Innovation Project Code: EP/G007314/1Funder Contribution: 1,381,940 GBPHigh aspect ratio nanoparticles (HARNs), such as nanorods and nanotubes, span both the micron and the nano domains, and are especially critical for hierarchical materials. The extra degrees of freedom associated with orientation create appealing opportunities but additional challenges. The implicit anisotropy of HARNs is reflected both in their intrinsic properties and in the rich structural variety of assemblies containing them. For example, while transverse quantum confinement can generate unique transport properties along the long axis of an individual nanowire, it is also possible to introduce internal structural or compositional variation, creating complex functionality within a single HARN . On the other hand, in order to use its inherent functionalities, the HARN must be integrated into a wider structure. From this perspective, high aspect ratio allows the formation of open networks or scaffolding with adjustable density, orientation, connectivity, and length scale. If the assembly process can be controlled, there is scope for complicated specific architectures, with ordered branches or junctions in the scaffolding, optimised for given applications. One way to envision the opportunity is to imagine the richness of metal organic frameworks (MOFs) multiplied by the structural and functional diversity that could be introduced by using HARNs as linking struts at a range of lengthscales. Note that although the term 'HARNS' could be taken to include oblate particles, such as nanoclay platelets, the focus here is on prolate rods, tubes, and fibres.At a conceptual level, the assembly of hierarchical materials represents the next challenge in materials science; mastering methods to control matter fully, across the lengthscales, will open up new vistas of science and application. On the other hand, the simplest networks of HARNs are already extremely relevant to a wide range of applications; existing examples include aligned CNT arrays for capacitor electrodes, aerospace epoxy nanocomposites with ultra-low electrical percolation thresholds, and efficient electron collection in titania nanorod photovoltaics. These current networks are almost all randomly designed, or at best, uniaxially oriented. The rational design of HARN architectures across different lengthscales will yield radical improvements in structural and functional performance.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::102b0c69d695c4dc999242ad711d4381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::102b0c69d695c4dc999242ad711d4381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2013Partners:University of Cambridge, University of Cambridge, New Venture Partners, Cambridge Enterprise, UNIVERSITY OF CAMBRIDGE +4 partnersUniversity of Cambridge,University of Cambridge,New Venture Partners,Cambridge Enterprise,UNIVERSITY OF CAMBRIDGE,Imperial Innovations Limited,Touchstone Innovations,New Venture Partners,Cambridge EnterpriseFunder: UK Research and Innovation Project Code: EP/J013609/1Funder Contribution: 116,467 GBPThere has been significant research investment into alternative methods of energy production that reduce our dependence on fossil fuels. With the exception of nuclear or neo-fossil fuels (e.g. biofuels), these resources (e.g. solar, wind) are neither generated nor converted into useful forms of energy (electric or mechanical) at the 'point of use' or 'on-demand' and require storage and a substantial delivery network. Battery technology will be an intrinsic part of the development of alternative energy strategies. However battery technology, whilst boasting large storage capability, is an essentially electrochemical process, and requires significant charging-up times. Therefore one cannot currently recharge electric car batteries as quickly as filling up a car with petrol. Equally, low capacity and high recharge-times of batteries in mobile devices (lap-tops, mobile phones) limits their ability to contain more functionality. It is obvious that the next breakthrough technology in mobile devices will be in their power packs. Supercapacitors are strong contenders to provide both high capacity and fast storage/release of energy. Capacitors, as every sixth form science student is aware, can store charge between two electrodes separated by an insulator (the dielectric). The key difference in supercapacitors is that the dielectric is an inherent part of each electrode, and charge is stored within nanoporous pathways within the dielectric. Moving or storing charge without an electrochemical change ( the method of storage in conventional batteries) means supercapacitor charge/discharge rates are fast leading to high power densities. Therefore supercapacitors using dielectrics with large surface area densities (i.e. internal surface per unit volume) from nanoporous materials will have energy densities resembling batteries whilst retaining the fast discharge/charge rates of supercapacitors. In this proposal, we use a radical new patented technology to generate dielectrics with high surface area densities. This is accomplished by introducing highly interconnected nanoscale pores into the materials in a controlled, reliably repeatable way. Certainly making nanoporous materials is not a new idea in itself. However existing methods are either expensive, or too unreliable. Our patent describes a way to do this, that using cheap materials, fast process-times and good reproducibility. This will be important in taking supercapacitor technology, which has been proved in the laboratory, and making it economically viable as a consumer product.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::56858b4913c2dc66c7f2766b587b3401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::56858b4913c2dc66c7f2766b587b3401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:Touchstone Innovations, Imperial College London, SPC technologies, Defence Science & Tech Lab DSTL, Defence Science and Technology Laboratory +5 partnersTouchstone Innovations,Imperial College London,SPC technologies,Defence Science & Tech Lab DSTL,Defence Science and Technology Laboratory,Applied Intellectual Capital,Defence Science & Tech Lab DSTL,Imperial Innovations Limited,Applied Intellectual Capital,SPC technologiesFunder: UK Research and Innovation Project Code: EP/G041792/1Funder Contribution: 217,491 GBPFuel Cells have a problem.The current geometrical design of common fuel cells is not fault tolerant and requires all components to operate in an almost ideal manner. This is because each power generating unit in a fuel cell stack is connected in series: the weakest link in the fuel cell chain dictates performance and reliability. Put simply: if a fuel cell is like a string of batteries all connected in a line, then that fuel cell can only operate as well as the worst performing of all of the batteries. If one of the batteries fails, then the entire fuel cell fails. This means that each battery (or membrane electrode assembly in the fuel cell case) must be produced to very high standards. We need to make sure that none of them fail during the operational life of the fuel cell stack. This makes the fuel cell electrodes very difficult to produce and contributes significantly to their cost. But what if we could design a fuel cell stack so that we can switch out bad units and allow the fuel cell to continue operation?Such a fuel cell would then show fault tolerance and resilience to adverse environmental and internal influences. Indeed it might even be possible to nurse poorly performing electrodes, and coax them back to good health (or at least stop them from failing entirely). In a nut-shell, that is the purpose of this project - to radically redesign how fuel cells operate. This will allow us to have much greater control of the fuel cell operation compared to the configuration used almost exclusively everywhere else. An interesting by-product of the new design is that we can integrate the power control electronics directly with the fuel cell. This means that we can achieve significant space savings and a decrease in the cost of the controlling electronics. In order to produce this new type of fuel cell, we require a very tight coupling between both Chemistry and Chemical Engineering aspects of the work. The development of new types of electrodes is guided by some subtle chemistry associated with the production of 'through-membrane' connectors. The integration of those electrodes into a stack requires a radically different type of housing. Such work must be carefully guided by modelling and simulation, and the results need to be fed back to optimise the electrodes. Thus we require close cooperation between both chemists and engineers in order to ensure the success of the project. The research team will be assisted by four collaborating external partners. These collaborators will assist with the development of the fuel cell system and represent a balanced team representing the development chain: a technology transfer company (Imperial Innovations Ltd) who will manage the commercialisation of this work out of Imperial; an applications developer (Applied intellectual Capital) who will define the market and establish precise operational requirements; a materials supplier / developer (SPC Technologies Ltd) who will supply sample materials for use as flow fields and sealant material and contribute expertise on the processing of porous plastics; and a potential end user (The Defence Science and Technology Laboratory) who will test the robust lightweight design against requirements for infantry missions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::531b6c906ddc92d3675537ebe0b391c8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::531b6c906ddc92d3675537ebe0b391c8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:Defence Science and Technology Laboratory, Applied Intellectual Capital, Touchstone Innovations, Defence Science & Tech Lab DSTL, Defence Science & Tech Lab DSTL +5 partnersDefence Science and Technology Laboratory,Applied Intellectual Capital,Touchstone Innovations,Defence Science & Tech Lab DSTL,Defence Science & Tech Lab DSTL,Applied Intellectual Capital,SPC technologies,UCL,Imperial Innovations Limited,SPC technologiesFunder: UK Research and Innovation Project Code: EP/G04483X/1Funder Contribution: 178,459 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8875a0cacaf312131c6a56888a1b989b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8875a0cacaf312131c6a56888a1b989b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right