Powered by OpenAIRE graph
Found an issue? Give us feedback

Croda International Plc

Croda International Plc

21 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/P027490/1
    Funder Contribution: 1,072,570 GBP

    In project BIOBEADS we propose to develop, in combination, new manufacturing routes to new products. Manufacturing will be based on a low-energy process that can be readily scaled up, or down, and the products will be biodegradable microbeads, microscapsules and microsponges, which share the performance characteristics of existing plastic microsphere products, but which will leave no lasting environmental trace. Using bio-based materials such as cellulose (from plants) and chitin (from crab or prawn shells), we will use continuous manufacturing methods to generate microspheres, hollow capsules and porous particles to replace the plastic microbeads currently in use in many applications. Cellulose and chitin are biodegradable and also part of the diet of many marine organisms, meaning they have straightforward natural breakdown routes and will not accumulate in the environment. BIOBEADS will be produced using membrane emulsification techniques. The project builds on our joint expertise in membrane emulsification for continuous production of tunable droplet sizes, dissolution of cellulose and chitin in green solvents and in characterization of nanoscale and microscale structures to study all aspects of particle formation from precursors, through formation processes, to degradation routes. Yhe primary focus will be spheres and capsules, for use in cosmetics and personal care formulations, but, by understanding the processes and mechanisms of formation of these spheres, we aim to be able to tailor particle properties to suit larger scale applications from paint stripping, to fillers in biodegradable plastics. The BIOBEADS research team will work with industrial partners, including very large manufacturers of personal care products, to ensure that the research conducted can be taken up and used, so having a real, positive impact on the manufacturing of new, more sustainble products.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R02524X/1
    Funder Contribution: 1,101,730 GBP

    The UK engineering coatings industry is worth over £11bn and affects products worth £140bn. The vision of this project is to create internationally unique multi-purpose PVD/PECVD coatings system which will enable innovation in advanced science of future hybrid coatings. This new facility would be built on the existing Leeds coating platform capability and would create system with no similar functionality available internationally. Using existing Leeds coating platform we can already deposit carbides, nitrides and diamond-like carbide (DLC) coatings, and we are exploiting this mainly for tribological applications with automotive, energy and lubricant companies. With this investment, we will be able to additionally process novel nanocomposite coatings, next generation of DLC coatings (with incorporated nanoparticles), advanced optical coatings and sensor coatings, carry out functionalisation of powders, barrier layers, coatings on polymers and coatings on complex shapes. This proposal aligns with a major new initiative at the University of Leeds to create an integrated gateway to Physical Sciences and Engineering by investing in the collaborative Bragg Centre that will house new state-of-the-art research facilities for the integrated development, characterisation and exploitation of novel advanced functional materials. This proposal also coincides with Leeds University investment in the Nexus Centre - a hub for the local innovation community as well as national and international organisations looking to innovate and engage in world-leading research. The upgraded coating platform would play a strategic role in the UK Surface Engineering landscape and complement existing national facilities. It would form a part of the new Sir Henry Royce Institute for Advanced Materials, of which Leeds is a partner. The configuration of the new instrument is designed to be versatile and serve a wide range of internal and external users with widely different classes of advanced materials. A number of specific activities have been planned to ensure that potential beneficiaries have the opportunity to engage with new coating facility. The economic competitiveness of the UK's manufacturing industry will benefit from new, commercially exploitable IP in novel cutting-edge Surface Engineering technology. Members of an academic community and industry will be able to benefit directly from the proposed research and generated new knowledge. They will gain new skills and know-how related to the latest advancements of PVD technologies. Improved adoption of Surface Engineering will result in wider UK PLC economic and societal impacts associated with development of functional surfaces for automotive, aerospace, biomedical, healthcare, defence, agriculture, oil & gas and packaging industries.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T022981/1
    Funder Contribution: 2,004,080 GBP

    The provision of low temperature industrial process heat in 2018 was responsible for over 30% of total industrial primary energy use in the UK. The majority of this, 75%, was produced by burning oil, gas and coal. Low temperature process heat is a major component of energy use in many industrial sectors including food and drink, chemicals and pharmaceuticals, manufacture of metal products and machinery, printing, and textiles. To reduce greenhouse gas emissions associated with low temperature process heat generation and meet UK targets, in the long term, will require a transition to zero carbon electricity, fuels or renewable heat. In the short term this is not feasible. We propose an approach in which heat is more effectively used within the industrial process, and/or exported to meet heat demands in the neighbouring area allowing significant reductions in greenhouse gas emissions per unit industrial production to be achieved and potentially provide an additional revenue source. We are going to perform a programme of research that will help provide a no regrets route through the transition to eventual full decarbonisation. The research consists of, i) fundamental and applied research to cost effectively improve components and systems performance for improved heat recovery, heat storage, heat upgrading, high temperature heat pumping and transporting heat with low loss, and ii) develop new temporal modelling approaches to predict how these technologies can be effectively integrated to utilise heat across a multi-vector energy system and evaluate a transactive modelling platform to address the complexity of how heat can be reutilised economically within energy systems. A series of case studies analysing the potential greenhouse gas reductions and cost benefits and revenues that may be achieved will be undertaken for selected industrial processes including a chemical production facility in Hull, to assess the benefits of i) individual technologies, ii) when optimally integrated within a heating/cooling network, or iii) when combined in a multi-vector energy system.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X025489/1
    Funder Contribution: 2,524,150 GBP

    Polymers in Liquid Formulations (PLFs) are a broad group of polymers that are used as thickeners, emulsifiers and binders in many day-to-day items including household detergents, cosmetics and agrochemicals. The vast majority of these polymers are derived from fossil fuel sources and they do not degrade in the environment. A recent report from the Royal Society of Chemistry has estimated that more than 36mn tonnes of these ingredients (enough to fill Wembley Stadium 32 times over) are not recovered after use every single year, presenting a significant environmental burden. Despite their importance to society and the global economy, and in contrast to the intense recent focus on the sustainability of plastics, there has been very little coordinated effort to address the sustainability of PLFs. There is a clear requirement and demand to make these vital ingredients more environmentally friendly; could they be developed from renewable resources and could they be biodegradable after their use? This is the key focus of our Prosperity Partnership. Croda is a global leader in high performance ingredients and technologies in some of the biggest, most successful brands in the world across a wide range of markets including Personal Care, Crop Care and Pharma. The company is committed to be Climate, Land and People positive by 2030 and in doing so be the most sustainable supplier of innovative ingredients. This ambition is driving the company to utilise greater proportions of bio-based feedstocks, transform them into performance ingredients through the most energy efficient processes and consider the end-of-life impacts of the materials generated. PLFs form a significant part of Croda's product portfolio and to ensure that this group of materials is economically and environmentally sustainable in the future, new approaches to PLF chemistry, production and end-of-life fate are required. To make a significant step change to this area of research, advancing knowledge, technical innovation and speed is critical. Croda has decided to join forces and build on the existing strong relationship with both the University of Nottingham and the University of York to catalyse the changes required, using joint expertise to accelerate innovation. Our Prosperity Partnership will be the catalyst in bringing together the best teams in terms of location, approach and above all scientific fit to meet Croda's current and future challenges. Collaboratively we will be addressing the challenge of developing novel biobased and biodegradable materials for PLF applications, offering equivalent performance benefits to existing synthetic polymers. On this journey we will need to build knowledge about how structural changes in molecular architecture influence biodegradability and end use performance, alongside developing an understanding of how this is exploited to optimise design and development of target polymers. The products generated will contribute to Croda's sustainable innovation targets, will support Croda's move to Net Zero manufacture, whilst also building UK expertise in this important area. For Croda's customers these ingredients will allow them to reduce their own carbon footprint, comply with future regulations and make significant advances towards their own sustainability goals. Co-creation and sharing of information between the partners will be fundamental to this approach, giving the opportunity to tap into green chemistry and polymer expertise from the Universities and add that to Croda's unrivalled understanding of product performance and market requirements. This Prosperity Partnership will give us continuity of partnerships, resource and talent to provide the critical mass required to tackle this major problem that is affecting our society right now, as we address the sustainability challenges of this essential group of ingredients.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022473/1
    Funder Contribution: 5,345,840 GBP

    The CDT in Molecules to Product addresses an overarching concern articulated by industry operating in the area of complex chemical products. It centres on the lack of a pipeline of doctoral graduates who understand the cross-scale issues that need to be addressed within the chemicals continuum. Translating their concern into a vision, the focus of the CDT is to train a new generation of research leaders with the skills and expertise to navigate the journey from a selected molecule or molecular system through to the final product that delivers the desired structure and required performance. To address this vision, three inter-related Themes form the foundation of the CDT - Product Functionalisation and Performance, Product Characterisation, and Process Modelling between Scales. More specifically, industry has identified a real need to recruit PGR graduates with the interdisciplinary skills covered by the CDT research and training programme. As future leaders they will be instrumental in delivering enhanced process and product understanding, and hence the manufacture of a desired end effect such as taste, dissolution or stability. For example, if industry is better informed regarding the effect of the manufacturing process on existing products, can the process be made more efficient and cost effective through identifying what changes can be made to the current process? Alternatively, if there is an enhanced understanding of the effect of raw materials, could stages in the process be removed, i.e. are some stages simply historical and not needed. For radically new products that have been developed, is it possible through characterisation techniques to understand (i) the role/effect of each component/raw material on the final product; and (ii) how the product structure is impacted by the process conditions both chemical and mechanical? Finally, can predictive models be developed to realise effective scale up? Such a focus will assist industry to mitigate against wasted development time and costs allowing them to focus on products and processes where the risk of failure is reduced. Although the ethos of the CDT embraces a wide range of sectors, it will focus primarily on companies within speciality chemicals, home and personal care, fast moving consumer goods, food and beverage, and pharma/biopharma sectors. The focus of the CDT is not singular to technical challenges: a core element will be to incorporate the concept of 'Education for Innovation' as described in The Royal Academy of Engineering Report, 'Educating engineers to drive the innovation economy'. This will be facilitated through the inclusion of innovation and enterprise as key strands within the research training programme. Through the combination of technical, entrepreneurial and business skills, the PGR students will have a unique set of skills that will set them apart from their peers and ultimately become the next generation of leaders in industry/academia. The training and research agendas are dependent on strong engagement with multi-national companies, SMEs, start-ups and stakeholders. Core input includes the offering, and supervision of research projects; hosting of students on site for a minimum period of 3 months; the provision of mentoring to students; engagement with the training through the shaping and delivery of modules and the provision of in-house courses. Additional to this will be, where relevant, access to materials and products that form the basis of projects, the provision of software, access to on-site equipment and the loan of equipment. In summary, the vision underpinning the CDT is too big and complex to be tackled through individual PhD projects - it is only through bringing academia and industry together from across multiple disciplines that a solution will be achievable. The CDT structure is the only route to addressing the overarching vision in a structured manner to realise delivery of the new approach to product development.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.