Powered by OpenAIRE graph
Found an issue? Give us feedback

Henkel (United Kingdom)

Henkel (United Kingdom)

1 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/J010715/1
    Funder Contribution: 387,021 GBP

    A major challenge in the development of more sustainable polymeric materials for industrial manufacturing processes (such as coating or molding) for commodity products is how to ameliorate the need to manipulate the material at elevated temperatures (so it can flow and be shaped as a liquid) whilst maintaining desirable mechanical properties of the polymer (e.g. strength and toughness) at room temperature in the finished article. Processes such as injection molding or hot-melt adhesive application require elevated temperatures (often greater than 200 degrees Celsius) and thus represent capital-intensive, energy-consuming, production technologies which in turn inflate the cost and carbon-footprint of the final product. The ability to manipulate polymers at relatively modest, and controllable, elevated temperatures (sub 100 degrees Celsius) would represent significant savings of energy and cost. This proposal describes a route to novel supramolecular materials that can be processed in this manner and will also offer recyclable characteristics. The project will investigate the physical and mechanical properties of new supramolecular polyurethanes and their composite materials in order to generate a new generation of adhesives and surface coatings. Supramolecular polymers are relatively short chain organic materials that are held together by many non-covalent interactions such as hydrogen bonding, to afford polymers of far higher molecular mass and, as a consequence, these systems exhibit many solid-state characteristics common to 'traditional' covalent bonded polymers (e.g. strength and stiffness). However, as a consequence of the relatively weak non-covalent interactions that hold the supramolecular polymers together, these materials can be dissociated easily into their individual contributing components by the application of a suitable (relatively modest) stimulus - e.g. heat or light. In this project we will also harness the thermal cycling potential of supramolecular polyurethanes in conjunction with the enhanced strength and toughness offered by fibrous and particulate fillers by developing novel supramolecular polymer composites. Such materials are potentially attractive as easily-applied adhesives and tough, corrosion resistant and healable coatings for metals and electronic components. The field of supramolecular composites is in its infancy and has yet to gain significant coverage in the literature and thus this proposal is very timely. Furthermore, the well-defined chemistry of the supramolecular polyurethanes and the composites formed from them will be used in conjunction with mechanical measurements to construct a solid-melt constitutive model parameterized in terms of the chemical structure of the supramolecular polyurethanes. In doing so, a predictive tool will be generated, suitable for design of further supramolecular materials, targeted at specific thermo-mechanical properties.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.