Powered by OpenAIRE graph
Found an issue? Give us feedback

SENER TAFS

SENER TAFS SA
Country: Spain
3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 101082611
    Overall Budget: 2,889,760 EURFunder Contribution: 2,882,810 EUR

    The main objective of SGAN-Next is to develop a fully European GaN on SiC foundry process and demonstrate outstanding performance at high frequency beyond Q-band, through the design of efficient and robust SSPA, LNA and switch devices for flexible LEO/GEO payloads. For this purpose, the project led by SENER as satellite equipment manufacturer, includes an epitaxy manufacturer (SweGaN), an industrial foundry (UMS), a research foundry (FBH) and two Universities (UNIBO and UAB). Moreover, the consortium count on the two main European satellite prime contractors (ADS and TAS) for the conceptual definition of services and the required system to answer market demand. SGaN-Next aims to secure a European supply chain with GaN epitaxial wafers provided by SweGaN. For this new process, Q/V band power cells will be designed making use of novel processing modules and epitaxial concepts which reduce parasitic losses and increase thermal drain to heat sink. In parallel, UMS provides access to its 0.1-µm GaN technology (GH10-10), which will be optimized and submitted to a space qualification assessment through two runs available for MMICs design and validation. Microwave characterisation of GaN technology performance by model refinement and device characterisation will be addressed to improve MMIC design process along the project. As highly efficient PAs are essential for Telecom active antennas with high number of active units, at least three PAs design concepts are proposed to answer the needs identified at equipment level. The efficiency has a critical impact on the extra power demanded to the system and the increased complexity to dissipate. On the reception side, a design of a LNA as well as a switch for robust RF front-end will be addressed. Last, but not least, packaging techniques will be evaluated for space use and finally, a demonstrator of an SSPA for actual antenna systems based on the designed MMIC’s will be developed and tested under space environmental conditions.

    more_vert
  • Funder: European Commission Project Code: 101082387
    Overall Budget: 2,398,620 EURFunder Contribution: 2,398,620 EUR

    The SAGAN proposal addresses a crucial element in future satellite platforms and payloads. Spacecraft Electrical Power Systems (EPS) are a key element that enable space missions. Without an efficient EPS, many of the capabilities that we take today for granted, such as high-speed communications, GNSS and science payloads, would not be possible. Power transistors are key elements of the electrical units that form the EPS and other systems, since they allow the most efficient (in terms of power and mass) electrical power processing topologies. During the last decade, several technological advancements have enabled a new type of transistors based on Gallium Nitride over Silicon. GaN transistors allow a reduction in mass of the equipment that uses them and a reduction in power consumption. Currently, Europe does not have the capabilities to produce GaN transistors for space unless relying on external countries for most of the supply chain, which is something that cannot be taken for granted. The objective of the SAGAN proposal is to overcome this situation by establishing a non-dependent supply chain (design, manufacturing, processing, and qualification testing) for GaN transistors that are suitable for space applications. The transistors will be tested to assess radiation effects, thermal dynamics, structural behaviour, reliaability... To achieve it, a strong consortium has been established. It is composed by organisations that have the knowleadge and the facilities to fulfil the objective. The consortium is composed of a company devoted to space level GaN transistors and integrated circuit design (SEMI ZABALA), a research foundry (IMEC), a company that processes wafers to the standards required by the technology (DISCO HI-TEC) and a satellite equipment manufacturer with component packaging capabilities (SENER). The consortium also counts with the role of GaN transistor end user, which is played by SENER as spacecraft equipment manufacturer.

    more_vert
  • Funder: European Commission Project Code: 101082007
    Overall Budget: 42,502,400 EURFunder Contribution: 39,000,000 EUR

    SALTO will perform, for the first time in Europe, fly / recover / refly cycles of a reusable rocket first stage demonstrator. Operating a large-scale vehicle at low altitude, consistent with future European strategic needs, and embedding a set of critical technologies, the project will significantly boost the strategic launchers roadmap, enabling the vision of a future launch fleet improving by 50% space access costs and reducing environmental impacts. SALTO will hence act as a “stepping stone” towards reusability of strategic launchers in Europe which is one of the key leverages to reach such vision. Fully aligned with previous ESA-funded activities (e.g. Themis initial phase Program), SALTO focuses on - Technologies and building blocks maturation up to TRL5/6 for the first stage of a strategic launcher; - Subsystem/system tests with two low altitude system tests (“hop test”) campaigns. SALTO's methodology will combine robust system engineering with technology maturation activities and a stepped demonstration strategy to accelerate experimental learning through the implementation of the Agile methodology. The SALTO project will culminate in flight test campaigns to demonstrate and validate the technologies necessary for a reusable launch vehicle. SALTO will contribute to the cost reduction target for strategic launcher in Europe by addressing ~3/4 (in cost) of all technologies / operations involved in a future European reusable rocket stage. While Europe is currently lagging behind other global players when it comes to reusable launchers, SALTO will reinforce EU’s independent capacity to access space, secure autonomy of supply for critical technologies and equipment, and foster EU's space sector competitiveness. At the end of the project, lessons will be drawn regarding the maturity of the different technological bricks, TRL and readiness for flight tests. A roadmap to increase their maturity will be prepared in view of suborbital tests by 2025.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.