Powered by OpenAIRE graph
Found an issue? Give us feedback

National Quantum Computing Centre

National Quantum Computing Centre

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/Y035046/1
    Funder Contribution: 8,340,420 GBP

    The primary objective of the QC2 CDT is to train the upcoming generation of pioneering researchers, entrepreneurs, and business leaders who will contribute to positioning the UK as a global leader in the quantum-enabled economy by 2033. The UK government and industry have demonstrated their commitment by investing £1 billion in the National Quantum Technologies Programme (NQTP) since 2014. In its March 2023 National Quantum Strategy document, the UK government reaffirmed its dedication to quantum technologies, pledging £2.5 billion in funding over the next decade. This commitment includes the establishment of the UKRI National Quantum Computing Centre (NQCC). The fields of quantum computation and quantum communications are at a pivotal juncture, as the next decade will determine whether the long-anticipated technological advancements can be realized in practical, commercially-viable applications. With a wide-ranging spectrum of research group activities at UCL, the QC2 CDT is uniquely situated to offer comprehensive training across all levels of the quantum computation and quantum communications system stacks. This encompasses advanced algorithms and quantum error-correcting codes, the full range of qubit hardware platforms, quantum communications, quantum network architectures, and quantum simulation. The QC2 CDT has been co-developed through a partnership between UCL and a network of UK and international partners. This network encompasses major global technology giants such as IBM, Amazon Web Services and Toshiba, as well as leading suppliers of quantum engineering systems like Keysight, Bluefors, Oxford Instruments and Zurich Instruments. We also have end-users of quantum technologies, including BT, Thales, NPL, and NQCC, in addition to a diverse group of UK and international SMEs operating in both quantum hardware (IQM, NuQuantum, Quantum Motion, SeeQC, Pasqal, Oxford Ionics, Universal Quantum, Oxford Quantum Circuits and Quandela) and quantum software (Quantinuum, Phase Craft and River Lane). Our partners will deliver key components of the training programme. Notably, BT will deliver training in quantum comms theory and experiments, IBM will teach quantum programming, and Quantum Motion will lead a training experiment on semiconductor qubits. Furthermore, 17 of our partners will co-sponsor and co-supervise PhD projects in collaboration with UCL academics, ensuring a strong alignment between the research outcomes of the CDT and the critical research objectives of the UK quantum economy. In total the cash and in-kind contributions from our partners exceed £9.1 million, including £2.944 million cash contribution to support 46 co-sponsored PhD studentships. QC2 will provide an extensive cohort-based training programme. Our students will specialize in advanced research topics while maintaining awareness of the overarching system requirements for these technologies. Central to this programme is its commitment to interdisciplinary collaboration, which is evident in the composition of the leadership and supervisory team. This team draws expertise from various UCL departments, including Chemistry, Electronics and Electrical Engineering, Computer Science, and Physics, as well as the London Centre for Nanotechnology (LCN). QC2 will deliver transferable skills training to its students, including written and oral presentation skills, fostering an entrepreneurial mindset, and imparting techniques to maximize the impact of research outcomes. Additionally, the programme is committed to taking into consideration the broader societal implications of the research. This is achieved by promoting best practices in responsible innovation, diversity and inclusion, and environmental impact.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z531066/1
    Funder Contribution: 11,782,400 GBP

    However, access to silicon prototyping facilities remains a challenge in the UK due to the high cost of both equipment and the cleanroom facilities that are required to house the equipment. Furthermore, there is often a disconnect in communication between industry and academia, resulting in some industrial challenges remaining unsolved, and support, training, and networking opportunities for academics to engage with commercialisation activities isn't widespread. The C-PIC host institutions comprising University of Southampton, University of Glasgow and the Science and Technologies Facilities Council (STFC), together with 105 partners at proposal stage, will overcome these challenges by uniting leading UK entrepreneurs and researchers, together with a network of support to streamline the route to commercialisation, translating a wide range of technologies from research labs into industry, underpinned by the C-PIC silicon photonics prototyping foundry. Applications will cover data centre communications; sensing for healthcare, the environment & defence; quantum technologies; artificial intelligence; LiDAR; and more. We will deliver our vision by fulfilling these objectives: Translate a wide range of silicon photonics technologies from research labs into industry, supporting the creation of new companies & jobs, and subsequently social & economic impact. Interconnect the UK silicon photonics ecosystem, acting as the front door to UK expertise, including by launching an online Knowledge Hub. Fund a broad range of Innovation projects supporting industrial-academic collaborations aimed at solving real world industry problems, with the overarching goal of demonstrating high potential solutions in a variety of application areas. Embed equality, diversity, and inclusion best practice into everything we do. Deliver the world's only open source, fully flexible silicon photonics prototyping foundry based on industry-like technology, facilitating straightforward scale-up to commercial viability. Support entrepreneurs in their journey to commercialisation by facilitating networks with venture capitalists, mentors, training, and recruitment. Represent the interests of the community at large with policy makers and the public, becoming an internationally renowned Centre able to secure overseas investment and international partners. Act as a convening body for the field in the UK, becoming a hub of skills, knowledge, and networking opportunities, with regular events aimed at ensuring possibilities for advancing the field and delivering impact are fully exploited. Increase the number of skilled staff working in impact generating roles in the field of silicon photonics via a range of training events and company growth, whilst routinely seeking additional funding to expand training offerings.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y01510X/1
    Funder Contribution: 9,319,150 GBP

    There has been rapid progress in recent years in exploring the possibility to use microscopic systems as quantum computers, to process information and solve computational challenges that are intractable even on the largest conventional supercomputers. While there has been a lot of progress in developing quantum computing, and even demonstrations claiming quantum primacy (where quantum systems outperform conventional computers on problems designed to test the specific quantum hardware), there are major open questions as to when we will first achieve a practical quantum advantage. This would mean obtaining solutions faster or that are novel compared to what is possible with a conventional computer, for problems of interest to science or industry (beyond simply testing the quantum hardware). While many systems under development are digital quantum computing devices, there is a growing class of analogue quantum simulators, which are highly controlled devices that can be used to implement and study models of other quantum systems. These are somewhat more analogous to analogue computers, or to devices in which we build scale models of dynamics such as wind and water tunnels. Like their analogue classical computing predecessors, these are likely to have impact for a restricted class of problems before we have large-scale digital quantum computers - and like wind and water tunnels they are likely to outperform digital quantum computers for specific tasks. In this Programme Grant, we aim to make a major step-change in the development of these devices, by demonstrating and then using a verified quantum advantage over any known classical device for specific classes of quantum dynamics. Our experimental programme is based on the most advanced platforms for analogue quantum simulation, specifically over 150 neutral atoms controlled by configurable arrays of laser light. We have three distinct platforms across our experimental teams, in which we will first demonstrate and verify operation in regimes of practical quantum advantage. In a close collaboration between experimental and theoretical researchers who set a roadmap for development of these platforms, we will explore and expand potential application areas. These will range from solid-state physics and material science, to using analogue quantum simulators as a testbed to develop next generations of quantum technologies, especially for measurement and sensing. Our overall vision is to make a transformative contribution to making these quantum simulation platforms useful beyond basic science, through development of the technologies and identification and prototyping of new application areas.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y035097/1
    Funder Contribution: 7,824,130 GBP

    Quantum technology will revolutionise many aspects of life and bring enormous benefits to the economy and society. The Centre for Doctoral Training in Quantum Informatics (QI CDT) will provide advanced training in the structure, behaviour, and interaction of quantum hardware, software, and applications. The training programme spans computer sciences, mathematics, physics, and engineering, and will enable the use of quantum technology in a way that is integrable, interoperable, and impactful, rather than developing the hardware itself. The training programme targets three research challenges with a strong focus on end user impact: (i) quantum service architecture concerns how to design quantum networks and devices most usefully; (ii) scalable quantum software is about feasible application at scale of quantum technology and its integration with other software; and (iii) quantum application analysis investigates how quantum technology can be used most advantageously to solve end user problems. The QI CDT will offer 75+ PhD students an intensive 4-year training and research programme that equips them with the skills needed to tackle the research challenges of quantum informatics. This new generation will be able to integrate quantum hardware with high-performance computing, design effective quantum software, and apply this in a societally meaningful way. The QI CDT brings together a coalition with national reach including over 65 academic experts in quantum informatics from five universities - the University of Edinburgh, the University of Oxford, University College London, Heriot-Watt University, and the University of Strathclyde - and three public sector partners - the National Quantum Computing Centre, the National Physical Laboratory, and the Hartree Centre. A network of over 30 industry partners, diverse in size and domain expertise, and 9 leading international universities, give students the best basis for meaningful and collaborative research. A strong focus on cohort-based training will make QI CDT students into a diverse network of future leaders in Quantum Informatics in the UK.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y034937/1
    Funder Contribution: 8,001,640 GBP

    Quantum information science and technologies (QIST) are uniquely placed to disrupt and transform sectors across the board. Quantum technologies, by exploiting the distinctive phenomena of quantum physics, can perform functions fundamentally unachievable by technologies based solely upon classical physics. For example, when applied to computing, calculations and operations that would take the best supercomputers hundreds of years to complete could be resolved within seconds using quantum computers; as another example, QIST can also be used in sensing and imaging to obtain enhanced precision in a variety of measurements ranging from gas concentrations to gravitational waves, supporting established industries in sectors like manufacturing, energy and healthcare. Furthermore, the application of quantum technologies will have significant implications within communications and security given their ability to break traditional encryption methods used to protect data within financial transactions or military communications while at the same time offering a range of novel, secure solutions largely compatible with the existing infrastructures. The potential of quantum technologies is well demonstrated through its significant financial and strategic backing globally. Restricted to academic environments up until the start of the last decade, the worldwide investment into quantum initiatives has now reached $33 billion, with significant contributions made across China, the US, and Europe. In the UK, the strategic importance of quantum technologies is clear: with a strategic commitment of £2.5 billion over the next decade, EPSRC has listed Quantum Technologies a mission-inspired research priority and the Department for Science Innovation and Technology have named quantum technologies as one of their seven technology families within the UK's Innovation Strategy. It is clear that, around the world, quantum technologies are flourishing. While the technological potential and national importance of QIST to the UK is undeniable, a key challenge to realising our ambitions in this area is the ability to develop a quantum workforce of capable physicists, engineers, computer scientists, and mathematicians with both the requisite expertise in quantum information science and expertise in the technologies that will realise it. In addition, the leaders of the UK's quantum future must possess critical professional skills: they must be excellent communicators, leaders, entrepreneurs, and project managers. To meet this key ambition and its resultant needs, the programme offered by the Quantum Information Science and Technologies Centre for Doctoral Training (QIST CDT) is uniquely positioned to deliver the diversity of skills and experience needed to supply the UK with internationally renowned QIST leaders across policy, innovation, research, entrepreneurship, and science communication. QIST CDT students will receive academic training delivered by world-recognised top educators and researchers; undertake industrially-relevant training modules co-delivered with industry partners; gain hands-on experience within world-leading quantum research laboratories; receive one-to-one entrepreneurial mentorship; undergo intellectual property and science policy training; undertake on-site industry placements; and complete multi-faceted cohort projects designed to develop multidisciplinary teamwork. This combination of world-class academic research training, which can be undertaken in a vast array of quantum-technology-relevant sectors, with bespoke instruction in professional skills driven by the needs of current and future quantum industry, will produce graduates with a drive to make a difference in Quantum Technologies and the skills to make that happen.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.