Powered by OpenAIRE graph
Found an issue? Give us feedback

California Institute of Technology

California Institute of Technology

44 Projects, page 1 of 9
  • Funder: UK Research and Innovation Project Code: NE/I020083/1
    Funder Contribution: 606,630 GBP

    The atmosphere and oceans control the Earth's climate. The ocean surface boundary layer (OSBL) is the upper 300m or so of the oceans and it is the part of the ocean that is directly affected by the atmosphere. So the OSBL acts to couple the atmosphere and deeper oceans together: it mediates the transfer of heat, momentum and important greenhouse gases such as carbon dioxide, and controls the supply of nutrients to the plankton that grow in the ocean surface boundary layer. In addition the temperature of the sea surface has an impact on weather forecasts for timescales of days to seasons. The sea surface temperature is largely set by the OSBL. It is clear then that the ocean surface boundary layer it truly at the heart of weather and climate. But our knowledge of the OSBL is very incomplete, and this means our quantitative models are not accurate. Nevertheless, it is a very exciting time to be doing research into the OSBL because we have new ideas about the fundamental processes that control the its evolution from timescales of days to years, and we also have exciting new tools to measure the ocean surface boundary layer. OSMOSIS will bring together a team of meteorologists and oceanographers with backgrounds in theory, computer modelling and observations, with the aim of making a step change to our understanding and our predictive power of the OSBL. We shall do this with a combination of new theory and new measurements. We will develop theory into the fundamental physics of the OSBL using the powerful new computational tools, which allow us to simulation the three-dimensional, time varying motions of the water in the OSBL. By careful analysis of the results of these computations we shall develop simpler representations of the OSBL that can be used in weather and forecast models. Will plan two research cruises and a range of instruments attached to fixed moorings to measure the OSBL at a level of detail never previously attempted. The cruises will enable us to observe at close quarters how the OSBL evolves under different weather regimes. The moorings will be left to gather data over a whole year, which will show us the seasonal evolution of the OSBL. These data will provide stringent tests for our new theoretical ideas, and our simpler representations. Finally, we are doing this research in conjunction with the Met Office and the European Centre for Medium Range Weather forecasting. We shall work closely with them doing the project, and their involvement will ensure that our results make a difference to the practise of weather and climate forecasting.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S001476/2
    Funder Contribution: 244,313 GBP

    DATA-CENTRIC will fundamentally transform modern computational engineering through the development of algorithms that are accountable. This means algorithms capable of quantifying the uncertainty arising from computation itself, delivering simulations that are more transparent, traceable and at the same time more efficient. Crucial decisions in science, engineering, healthcare and public policy rely on established methodologies such as the Finite Element Method and the Stochastic Finite Element Method. However, the models that inform such decisions suffer from an inevitable loss of accuracy due to, and not limited to the following sources of uncertainty: a) time and cost constraints of running modern high-fidelity computer models, b) simplifying approximations necessary to translate mathematical models into computational models, and c) limited numerical precision inherent to any computer system. Therefore, there is a continuous risk of relying on unverified computational evidence, and the path from modelling to decision-making can be (inadvertently or unwillingly) obscured by the lack of accountability. DATA-CENTIC will solve this problem through Probabilistic Numerics, a framework that will enable decision-makers to monitor, diagnose and control the quality of computer simulations. Probabilistic Numerics treats computation as a statistical problem, thus enriching computation with a probabilistic measure of numerical error. This idea is gathering momentum, especially in the UK. However, theoretical development are still in their early stages and except for a few examples, it has not been applied to solve large-scale industrial problems. Consequently, it has not yet been adopted by industry. DATA-CENTRIC will bridge this gap. . The proposed approach will provide radically new insights into the Finite Element Method and the Stochastic Finite Element Method. In particular, it will produce new solutions to industrial problems in Biomechanics and Robust Design. This has the potential of transforming personalised medicine and high-value manufacturing and will open the door to new industrial applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T013788/1
    Funder Contribution: 507,642 GBP

    Synthetic biology is an emerging field of engineering that aims to establish a systematic framework for the design of biological systems based on a 'bottom-up' approach for the reconstruction of complex bio-molecular systems. The application of an engineering approach to design is attractive, as many engineering parallels can be identified in living systems. However, biological systems are highly complex and dynamic and difficult to engineer. Rapid characterization of particular biological parts and devices requires new methods as existing methods are inefficient and error prone, and require extensive time-consuming experiments. An alternative to current methods is the use ell-free systems for rapid characterization. Cell-free systems are cell extracts that contain all the machinery that allows biological parts to function and as such one can analyse many parts quickly without using living cells. This therefore speeds up the whole process. However, cell free systems can be variable and the results can be different between different researchers. The overall goal of this project is to further advance standardized cell-free systems using both computer models and new biochemical measurement tools. Such standardized systems will both explore the boundaries of cell-free prototyping and characterization, and enable more detailed understanding of key mechanisms, accelerating the usage and broader utility of cell-free systems in industry and academia.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z531169/1
    Funder Contribution: 1,275,040 GBP

    Photonic ring resonators are miniature optical waveguiding structures that enable light to reach very high intensities in closed, circular paths. The loop structure and wave nature of light results in interference of the field such that the system becomes highly resonant with a repeated pattern. Each ring supports a comb of highly defined, specific frequencies of light, the spacing between which depends on the optical path length of the ring. In devices with a high-quality factor (high-Q), the optical circulating power can build up from a small milliwatt input signal to reach kilowatts of circulating power. The small, guided area of these devices results in immense power densities, permitting non-linear optical effects at remarkably low powers, despite the host material having low intrinsic non-linear properties. However, the achievable quality (Q) of such resonators has so far been limited by the losses caused by the absorption and scattering of light by the materials and structures used to fabricate the ring. The last 20 years have enabled significant progress in integrated photonics (optical circuits that guide and manipulate light analogous to the microchip in electronics), including the reduction of loss. Refined processes using CMOS-based cleanroom techniques have allowed researchers to improve optical transmission from 10% per metre to approximately 99.9% per metre in miniaturised optical chips. This has enabled the fabrication of optical microresonators with ultra-high-Q factors (over 100 million). These wafer-based devices form key components in advanced integrated photonic circuits for narrow linewidth lasers and frequency combs. The first generation of these devices has enabled compact systems for radar as well as for precision timing and navigation. Despite significant progress in the field, waveguide loss in state-of-the-art integrated photonics devices has plateaued at 100x higher losses than those readily achieved in standard telecoms optical fibre used for long-haul broadband internet. This limit is not fundamental but technological, and if fibre-like losses could also be achieved in an integrated photonics package, this would enable a new generation of applications and improvements in performance. These include compact, robust gyroscopes and low-power frequency combs for navigation and precision timing, ultra-narrow linewidth lasers (mHz to Hz), and advanced photonic components for telecommunication networks. This proposal seeks to combine the benefits of optical fibre fabrication approaches and material science developed over the past 50 years with the latest state-of-the-art CMOS fabrication techniques used for integrated optics. We aim to develop a manufacturing technique that will produce integrated ring resonator devices with the highest Q ever achieved. Using flame hydrolysis deposition and other standard optical fibre manufacturing techniques, we will develop ultra-pure glass layers to negate absorption losses. In particular, we will focus on high phosphorus and germanium doping, which we have shown can lead to dramatically better uniformity during our recent Caltech-Southampton DARPA seed project. We will use optical fibre manufacturing techniques to reduce loss from absorbed hydrogen and develop diffusion and reflow processes to remove waveguide interface and scattering losses. Our ambition is to develop the foundations for a scalable manufacturing process for the next generation of ultra-high-Q micro-ring resonators. These devices will enable a range of new technologies, including rugged miniature gyroscopes for navigation, combs for precision timing in data networks and optical sources for quantum technologies.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/K002449/1
    Funder Contribution: 744,321 GBP

    To minimize the risk of dangerous climate change associated with increasing concentrations of atmospheric greenhouse gases (GHG), as part of ongoing international efforts, the 2008 Climate Change Act requires that the UK reduces its GHG emissions by at least 80% by 2050, compared to 1990 levels. To support such legislation, methods must be developed to reduce uncertainty on existing national GHG emissions estimates and monitor the efficacy of emissions reduction strategies. In 2010, CO2 represented about 85% of total UK GHG emissions, with the remainder largely from methane (CH4) and nitrous oxide (N2O). In 2010, the main UK sources of CO2 were energy supply, road transport, business, and residential; the main sources of CH4 were agriculture and landfill with small sources from gas leakage and coal mines; and the main sources of N2O were agriculture, industrial process, and road transport. There are substantial associated uncertainties with sectoral estimates of these emissions, particularly for N2O. The main focus of Greenhouse gAs Uk and Global Emissions (GAUGE) is to quantify UK budgets of CO2, CH4, and N2O from different sectors, and to improve global GHG budgets. The UK study will focus on fossil fuels and agriculture, the two largest sources of the three GHGs. We will achieve this by combining atmospheric measurements with computer models of the atmosphere, which describe the movement of GHGs after emission. We already have a reasonable idea of where GHGs are emitted but the size of the emissions typically has a large associated error. Depending on the emission type it may also have a substantial seasonal cycle (e.g., agriculture). It is therefore important we make regular GHG measurements at different times of the year and in different places. The UK research aircraft will provide the broad-scale 3-D perspective on the inflow and outflow of UK GHG budgets, complementing information from existing tall towers. The network of tall towers measure GHGs at 100-200m above the surface to ensure that the sampled air is representative of larger areas, and the towers are intentionally sited to provide estimates of GHG emissions in the Devolved Administrations. As part of GAUGE we will add to this network with a tower in the Scottish borders that provides substantially more information about the north of England, Scotland, and the North Sea; a tower over SE England, downwind of London; and we will support existing instruments on the BT tower in central London. The SE London tower and the BT tower together will allow us to provide the first multi-year record of urban emissions from a megacity. We will use GHG isotopes to improve understanding of the fossil fuel sources. A detailed study of agricultural GHG emissions will be conducted over East Anglia, allowing us to quantify the importance of this sector in the UK GHG budget. Weekly measurements aboard a North Sea ferry will provide constraints on UK GHG fluxes by regularly sampling transects of UK outflow. Satellite observations of GHGs offer a unique global perspective, linking UK emissions to the rest of the world, and we will work with NASA to develop and apply new observations to quantify global GHG budgets on a sub-UK spatial scale. Embedded in this long-term measurement strategy will be a measurement intensive to quantify London GHG emissions, where we will use the UK research aircraft to sample profiles of upwind/downwind air, validate dedicated satellite observations, and link urban measurements with downwind in situ and tall tower measurements. In GAUGE we bring together computer models of the atmosphere, and a team of world-leading modellers, in order to relate observed variations of GHGs to estimates of the underlying emissions. Statistical approaches will be used to find emissions that best agree with the measurements, taking account of model and data uncertainties. The main outcome from GAUGE will be robust GHG emission estimates from the UK and from the world.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.