
QED FILM & STAGE PRODUCTIONS LTD
QED FILM & STAGE PRODUCTIONS LTD
3 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2022Partners:FZJ, FEI, Helmholtz Association of German Research Centres, CNR, QED FILM & STAGE PRODUCTIONS LTDFZJ,FEI,Helmholtz Association of German Research Centres,CNR,QED FILM & STAGE PRODUCTIONS LTDFunder: European Commission Project Code: 101035013Funder Contribution: 100,000 EURElectron microscopy allows scientists to measure and image material properties down to the very atomic scale, bringing to fruition Feynman’s visionary idea that saw in the electron microscope the main instrument for nanoscience. However, its development has been restricted for many years to improving spatial and energetic resolution, through the adoption of bulky sets of magnetic lenses and multipoles. This approach has begun to feel limiting - since cross-fertilisation with light optics has shown the many possibilities hidden in the newly-acquired capacity to perform electron beam shaping. In the course of the Q-SORT FET project, we devised an innovative approach to electron beam shaping based on MEMS technology and complex analogue control of the device. MINEON will further validate the design of a MEMS-based spiral phase plate, based on the above approach. Crucially, we will also conduct market surveys, cost modelling, and extensive dissemination targeted at the intended user and funder communities, with the aim of attracting and probing the interest of prospective users and investors. Compared to standard electron optics, this approach is revolutionary because the setup is significantly simpler, more compact, much more flexible, enabling moreover the achievement of very unconventional phase effects. The entailed MEMS technology is of further future commercial interest because it enables many other possible types of beam shaping devices, which could address aberration correction, better material-free Zernike phase plates, multipole analysis of fields in a sample, computational ghost imaging. At the end of this project: - a series of working prototypes of the device and a pilot application for its more effective exploitation will be available - the market potential of the device will have been assessed - its existence will have been disseminated and advertised within the target communities - the cost & revenue model for its production will have been determined.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::77e0470ad9777ba06a18eeb7ad3b13cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::77e0470ad9777ba06a18eeb7ad3b13cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2025Partners:Holoeye Photonics (Germany), Technion – Israel Institute of Technology, UNIMIB, QED FILM & STAGE PRODUCTIONS LTD, ICFO +2 partnersHoloeye Photonics (Germany),Technion – Israel Institute of Technology,UNIMIB,QED FILM & STAGE PRODUCTIONS LTD,ICFO,EPFL,CNRFunder: European Commission Project Code: 964591Overall Budget: 3,042,910 EURFunder Contribution: 3,042,910 EURAddressing the grand-challenges that the world is facing nowadays in connection with ‘energy’, ‘information’ and ‘health’ requires the development of unconventional methods for unprecedented visualization of matter. SMART-electron aims at developing an innovative technological platform for designing, realizing and operating all-optical rapidly-programmable phase masks for electrons. By introducing a new paradigm where properly synthesized ultrafast electromagnetic fields will be used for engineering the phase space of a free-electron wave function, we will be able to achieve unprecedented space/time/energy/momentum shaping of electron matter waves, surpassing conventional passive monolithic schemes and revolutionizing the way materials are investigated in electron microscopy. Such unique high-speed, flexible and precise full-phase multidimensional control, will enable novel advanced imaging approaches in electron microscopy with enhanced features, such as higher image-resolution, lower electron dose, faster acquisition rate, higher signal-to-noise ratio, and three-dimensional image reconstruction, together with higher temporal resolution and high energy-momentum sensitivity. In SMART-electron, we will make such potential a reality by implementing for the first time three beyond-the-state-of-the-art imaging techniques enabled by our photonic-based electron modulators, namely: (1) Ramsey-type Holography, (2) Electron Single-Pixel Imaging, and (3) Quantum Cathodoluminescence. Such new approaches will lead to unprecedented visualization of many-body states in quantum materials, real-time electrochemical reactions, and spatio-temporal localization of biomimetic nanoparticles in cells for drug delivery. By surpassing the current paradigms in terms of electron manipulation, the project has the potential to drive electron microscopy into a new and exciting age where scientists will benefit from new tools with unprecedented performances that were unimaginable until now.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e9f0b0877a036a023f7f1c6189ea21d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e9f0b0877a036a023f7f1c6189ea21d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2017 - 2021Partners:FZJ, MPG, Helmholtz Association of German Research Centres, UM, University of Glasgow +4 partnersFZJ,MPG,Helmholtz Association of German Research Centres,UM,University of Glasgow,FEI,UNIMORE,QED FILM & STAGE PRODUCTIONS LTD,CNRFunder: European Commission Project Code: 766970Overall Budget: 2,997,680 EURFunder Contribution: 2,997,680 EURQ-SORT introduces a revolutionary concept whereby the TEM is employed as a Quantum Sorter. All TEM techniques are in fact limited to the imaging and energy spectroscopy of the electron wavefunction. Moreover, when a single sample property is sought, most of the image information is useless, a waste that cannot be afforded in dose-sensitive materials. The Quantum Sorter leverages the recently-acquired capacity to structure e-beams, which implies that if, in a quantum experiment (tunable state preparation, interaction, analysis), the analysis is performed over the ‘optimal’ basis of quantum states, very few electrons are necessary for the full characterisation of a sought property, i.e. the TEM can be tuned to answer a single question but with maximum efficiency. To this end, Q-SORT introduces a new parallel analysis strategy, based on a suitable conformal mapping of the wavefunction: the starting point is the analysis of orbital angular momentum (OAM), but building a recipe for diagonalising a wider range of observables is one of the planned Breakthroughs of Q-SORT. This will in turn allow Q-SORT to achieve three other high-risk Breakthroughs of vast applicability: assessing the OAM of plasmonic resonances in select nanoparticles, achieving atomic-resolution magnetic dichroism, identifying different proteins based on selected properties. We believe that the Quantum Sorter will become so important that it will eventually be part of every state-of-the-art TEM, since the new technology is easy to integrate with energy-loss spectrometry. The project consortium includes some of the world leaders in optical and electronic vortex beams, as well as in protein cryoTEM. A major industrial partner in TEM is included, so as to secure market penetration of technological outcomes. The project avails itself of established resource and IPR management techniques. Gender balance and equal opportunities will be ensured. A comprehensive outreach and dissemination strategy is foreseen.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::22419e4faa129c9a436503d661927dc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::22419e4faa129c9a436503d661927dc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu