
Airbus (United Kingdom)
Airbus (United Kingdom)
172 Projects, page 1 of 35
assignment_turned_in Project2019 - 2028Partners:Pragmatic Semiconductor Limited, Cambridge Integrated Knowledge Centre, aXenic Ltd., Continental Automotive GmbH, Airbus Defence and Space +81 partnersPragmatic Semiconductor Limited,Cambridge Integrated Knowledge Centre,aXenic Ltd.,Continental Automotive GmbH,Airbus Defence and Space,Integer Holdings Corporation,Waveoptics,HUBER+SUHNER Polatis Ltd,Xilinx NI Limited,Defence Science & Tech Lab DSTL,HUBER+SUHNER Polatis Ltd,Teraview Ltd,BAE Systems (Sweden),PervasID Ltd,Photon Design Ltd,CIP Technologies,UCL,Optalysys Ltd,Thales Aerospace,Thales Group (UK),TREL,Continental Automotive GmbH,Toshiba Research Europe Ltd,Huawei Technologies (UK) Co. Ltd,Plessey Semiconductors Ltd,Oclaro Technology UK,Zinwave Ltd,DSTL,Defence Science & Tech Lab DSTL,Phasor Solutions Ltd,Thales Group,BAE Systems (United Kingdom),The Rockley Group UK,Zilico Ltd,Xilinx (Ireland),TeraView Limited,PragmatIC Printing Ltd,Inphenix,Zilico Ltd,Anvil Semiconductors Ltd,Stryker International,Huawei Technologies (UK) Co. Ltd,Zinwave,Phasor Solutions Ltd,Precision Acoustics Ltd,Chromacity Ltd.,Microsoft Research Ltd,Xtera Communications Limited,Xtera Communications Limited,PervasID Ltd,Leonardo MW Ltd,Inphenix,Bae Systems Defence Ltd,Precision Acoustics (United Kingdom),PHOTON DESIGN LIMITED,FAZ Technology Limited,British Telecom,Waveoptics,Teraview Ltd,VividQ,GE Aviation,The Rockley Group UK,Airbus Defence and Space,Hitachi Cambridge Laboratory,Optalysys Ltd,British Telecommunications plc,Analog Devices Inc (Global),Chromacity Ltd.,MICROSOFT RESEARCH LIMITED,aXenic Ltd.,FAZ Technology Limited,Airbus (United Kingdom),Anvil Semiconductors Ltd,Integer Holdings Corporation,Eblana Photonics (Ireland),Eight19 Ltd,Oclaro Technology UK,BT Group (United Kingdom),VividQ,Eight19 Ltd,PLESSEY SEMICONDUCTORS LIMITED,Stryker International,Analog Devices,Xilinx (United States),Hitachi Cambridge Laboratory,BAE Systems (UK)Funder: UK Research and Innovation Project Code: EP/S022139/1Funder Contribution: 5,695,180 GBPThis proposal seeks funding to create a Centre for Doctoral Training (CDT) in Connected Electronic and Photonic Systems (CEPS). Photonics has moved from a niche industry to being embedded in the majority of deployed systems, ranging from sensing, biophotonics and advanced manufacturing, through communications from the chip-to-chip to transcontinental scale, to display technologies, bringing higher resolution, lower power operation and enabling new ways of human-machine interaction. These advances have set the scene for a major change in commercialisation activity where electronics photonics and wireless converge in a wide range of information, sensing, communications, manufacturing and personal healthcare systems. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet depends, limits the benefits that could come from systems-led design and the development of technologies for seamless integration of electronic photonics and wireless systems. To realise such connected systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across the fields of electronic photonics and wireless hardware and software. This proposal seeks to meet this important need, building upon the uniqueness and extent of the UCL and Cambridge research, where research activities are already focussing on higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for the low-cost roll-out of optical fibre to replace the copper network; the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed CDT includes experts in electronic circuits, wireless systems and software. By drawing these complementary activities together, and building upon initial work towards this goal carried out within our previously funded CDT in Integrated Photonic and Electronic Systems, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, responsible innovation (RI), commercial and business skills to enable the £90 billion annual turnover UK electronics and photonics industry to create the closely integrated systems of the future. The CEPS CDT will provide a wide range of methods for learning for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, responsible innovation (RI) studies, secondments to companies and other research laboratories and business planning courses. Connecting electronic and photonic systems is likely to expand the range of applications into which these technologies are deployed in other key sectors of the economy, such as industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine. As a result, a key feature of the CDT will be a developed awareness in its student cohorts of the breadth of opportunity available and the confidence that they can make strong impact thereon.
more_vert assignment_turned_in Project2007 - 2010Partners:University of Manchester, Airbus, Airbus (United Kingdom), University of Salford, The University of Manchester +1 partnersUniversity of Manchester,Airbus,Airbus (United Kingdom),University of Salford,The University of Manchester,AIRBUS OPERATIONS LIMITEDFunder: UK Research and Innovation Project Code: EP/E047041/1Funder Contribution: 261,247 GBPThe potential for exploiting synthetic jet actuators to delay and control boundary-layer separation in conditions akin to those on aircraft components operating in high-load conditions has attracted much interest in recent years. However, the fundamental mechanism by which synthetic jets interact with incipiently separated turbulent boundary layers subjected to strongly adverse pressure gradient is yet to be fully understood before cost-effective operational flow-control solutions can be sought. This proposal seeks funding for a joint programme of work between groups at Manchester University and Imperial College London, which would exploit complementary strengths and facilities at the two universities. The programme aims to employ a combined experimental (Stereo PIV and other conventional measurement techniques) and computational approach (LES and LES/RANS hybrid modelling) to study the detailed interaction mechanisms, so as to derive generically valid guidelines on optimal separation control in a practical setting. The outcome of the research would be of value to both the academic community and aerospace industry, the latter striving to evolve engineering solutions to flow management with a minimum of moving parts and energy input.
more_vert assignment_turned_in Project2010 - 2013Partners:Rolls-Royce (United Kingdom), University of Bristol, University of Bristol, Rolls-Royce (United Kingdom), Airbus +3 partnersRolls-Royce (United Kingdom),University of Bristol,University of Bristol,Rolls-Royce (United Kingdom),Airbus,Airbus (United Kingdom),AIRBUS OPERATIONS LIMITED,ROLLS-ROYCE PLCFunder: UK Research and Innovation Project Code: EP/H010920/1Funder Contribution: 224,139 GBPRecent years have seen increasing interest in the use of thick-section composites for safety-critical components in, for example, primary aircraft structure and fan blades in aero engines. All such components are required to undergo non-destructive evaluation (NDE) during manufacture; this is time consuming and NDE throughput is stretched to its limit internationally. Current composite Non-destructive Evaluation (NDE) is based on a qualitative empirical approach where a single normal-incidence ultrasonic probe is used to estimate the average ultrasonic attenuation from the amplitude of the back-wall reflection. While adequate for accepting or rejecting thin composite panels, this approach does not provide the level of defect characterisation and localisation necessary for the quantitative NDE of larger components.There is a clear and pressing industrial need for quantitative NDE techniques that can be applied to safety-critical composite components both at manufacture and in-service. An ultrasonic technique is the industrially preferred option for reasons of cost, safety and ease of deployment, but increased scanning speeds are required to speed up throughput. However, the conflicting demands of rapid scanning, high-penetration depth and accurate defect characterisation cannot be achieved with a single normal-incidence probe. Instead the data from multiple inspection directions must be combined. The necessary raw data can be rapidly and efficiently obtained using an ultrasonic array, but at present it cannot be exploited. This is due to the lack of (a) an appropriate forward model of oblique wave propagation and scattering processes, and (b) a suitable inversion scheme to turn the raw data into useful information. This is the motivation for the proposed research programme, the aim of which is to develop ultrasonic array data processing techniques based on physical reasoning for the characterisation of safety-critical aerospace composites. The programme requires advancement of the fundamental science of wave phenomena in composites, the solution of a challenging inverse problem and, crucially, the translation of the scientific findings into practical industrial solutions.
more_vert assignment_turned_in Project2014 - 2023Partners:Morgan Motor Company, Airbus Group Limited (UK), BAE Systems (Sweden), Shell Global Solutions International BV, Arup Group Ltd +87 partnersMorgan Motor Company,Airbus Group Limited (UK),BAE Systems (Sweden),Shell Global Solutions International BV,Arup Group Ltd,Motor Industry Research Assoc. (MIRA),Technology Strategy Board (Innovate UK),CERES POWER LIMITED,Bae Systems Defence Ltd,Scottish and Southern Energy SSE plc,RiverSimple,Morgan Motor Company,UKRI,Adelan Limited,Scottish and Southern Energy,Microcab Industries Limited,Cenex,University of Birmingham,Zytek Group Ltd,Arcola Energy,University of Birmingham,Airbus (United Kingdom),EADS Airbus,Miba Coatings Group,Scottish and Southern Energy SSE plc,Johnson Matthey plc,MIRA LTD,Arup Group,MiCo Group,ITM POWER PLC,Zytek Group Ltd,ITM Power,Riversimple Movement Ltd,Knowledge Transfer Networks KTN,AFCEN,Karlsruhe Institute of Technology / KIT,Ove Arup & Partners Ltd,Modern Built Environment,Airmax Group,EPL Composite Solutions,Revolve technologies Ltd,Ceres Power Ltd,UK Hydrogen and Fuel Cell Association,TATA Motors Engineering Technical Centre,National Physical Laboratory NPL,TATA Motors Engineering Technical Centre,Intelligent Energy,Eminate Limited,Census Bio UK,Adelan Limited,University of Ulster,Arcola Energy,Revolve technologies Ltd,STFC Swindon Office,PV3 Technologies Ltd,NPL,ITM Power plc,Hart Materials Limited,Microcab Industries Limited,BAE Systems (UK),University of Yamanashi,Forschungszentrum Karlsruhe,Hi Speed Sustainable Manufacturing Inst,HSSMI (High Speed Sust Manufact Inst),Idea Source,Airmax Group,McCamley Middle East Ltd UK,Hart Materials Limited,STFC,Innovate UK,Energy Technologies Institute (ETI),JOHNSON MATTHEY PLC,MIRA Ltd,ETI,Cenex,Miba Coatings Group,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,AFC Energy,BAE Systems (United Kingdom),McCamley Middle East Ltd UK,PV3 Technologies Ltd,EPL Composite Solutions,MiCo Group,Idea Source,UK Hydrogen and Fuel Cell Association,UU,University of Tech Belfort Montbeliard,University of Yamanashi,UFRJ,Eminate Limited,Intelligent Energy Ltd,JMFunder: UK Research and Innovation Project Code: EP/L015749/1Funder Contribution: 4,486,480 GBPThe CDT proposal 'Fuel Cells and their Fuels - Clean Power for the 21st Century' is a focused and structured programme to train >52 students within 9 years in basic principles of the subject and guide them in conducting their PhD theses. This initiative answers the need for developing the human resources well before the demand for trained and experienced engineering and scientific staff begins to strongly increase towards the end of this decade. Market introduction of fuel cell products is expected from 2015 and the requirement for effort in developing robust and cost effective products will grow in parallel with market entry. The consortium consists of the Universities of Birmingham (lead), Nottingham, Loughborough, Imperial College and University College of London. Ulster University is added as a partner in developing teaching modules. The six Centre directors and the 60+ supervisor group have an excellent background of scientific and teaching expertise and are well established in national and international projects and Fuel Cell, Hydrogen and other fuel processing research and development. The Centre programme consists of seven compulsory taught modules worth 70 credit points, covering the four basic introduction modules to Fuel Cell and Hydrogen technologies and one on Safety issues, plus two business-oriented modules which were designed according to suggestions from industry partners. Further - optional - modules worth 50 credits cover the more specialised aspects of Fuel Cell and fuel processing technologies, but also include socio-economic topics and further modules on business skills that are invaluable in preparing students for their careers in industry. The programme covers the following topics out of which the individual students will select their area of specialisation: - electrochemistry, modelling, catalysis; - materials and components for low temperature fuel cells (PEFC, 80 and 120 -130 degC), and for high temperature fuel cells (SOFC) operating at 500 to 800 degC; - design, components, optimisation and control for low and high temperature fuel cell systems; including direct use of hydrocarbons in fuel cells, fuel processing and handling of fuel impurities; integration of hydrogen systems including hybrid fuel-cell-battery and gas turbine systems; optimisation, control design and modelling; integration of renewable energies into energy systems using hydrogen as a stabilising vector; - hydrogen production from fossil fuels and carbon-neutral feedstock, biological processes, and by photochemistry; hydrogen storage, and purification; development of low and high temperature electrolysers; - analysis of degradation phenomena at various scales (nano-scale in functional layers up to systems level), including the development of accelerated testing procedures; - socio-economic and cross-cutting issues: public health, public acceptance, economics, market introduction; system studies on the benefits of FCH technologies to national and international energy supply. The training programme can build on the vast investments made by the participating universities in the past and facilitated by EPSRC, EU, industry and private funds. The laboratory infrastructure is up to date and fully enables the work of the student cohort. Industry funding is used to complement the EPSRC funding and add studentships on top of the envisaged 52 placements. The Centre will emphasise the importance of networking and exchange of information across the scientific and engineering field and thus interacts strongly with the EPSRC-SUPERGEN Hub in Fuel Cells and Hydrogen, thus integrating the other UK universities active in this research area, and also encourage exchanges with other European and international training initiatives. The modules will be accessible to professionals from the interacting industry in order to foster exchange of students with their peers in industry.
more_vert assignment_turned_in Project2015 - 2017Partners:West of England LEP, Airbus Group Limited (UK), Balfour Beatty (United Kingdom), West of England Local Enterprise Partnership (United Kingdom), Knowle West Media Centre +35 partnersWest of England LEP,Airbus Group Limited (UK),Balfour Beatty (United Kingdom),West of England Local Enterprise Partnership (United Kingdom),Knowle West Media Centre,Dyson Appliances Ltd,Schumacher Institute,Future Cities Catapult,COSTAIN LTD,Airbus (United Kingdom),EADS Airbus,BALFOUR BEATTY RAIL,Motor Design Ltd,Cardiff Capital Region Board,Bristol and Bath Science Park,3D Systems Inc,Dyson Limited,Motor Design Ltd,Bristol City Council,Cardiff Capital Region Board,Frazer-Nash Consultancy Ltd,Cardiff Council,Knowle West Media Centre,3D Systems Inc,RepRap Professional Ltd (RepRapPro),Bristol City Council,University of Bristol,Cardiff Council,Low Carbon South West,DNV GL (UK),FRAZER-NASH CONSULTANCY LTD,Schumacher Institute,Low Carbon South West,University of Bristol,Costain Ltd,Future Cities Catapult,RepRap Professional Limited,BBSP,DNV GL (UK),BALFOUR BEATTY PLCFunder: UK Research and Innovation Project Code: EP/M01777X/1Funder Contribution: 491,658 GBPThe world's manufacturing economy has been transformed by the phenomenon of globalisation, with benefits for economies of scale, operational flexibility, risk sharing and access to new markets. It has been at the cost of a loss of manufacturing and other jobs in western economies, loss of core capabilities and increased risks of disruption in the highly interconnected and interdependent global systems. The resource demands and environmental impacts of globalisation have also led to a loss of sustainability. New highly adaptable manufacturing processes and techniques capable of operating at small scales may allow a rebalancing of the manufacturing economy. They offer the possibility of a new understanding of where and how design, manufacture and services should be carried out to achieve the most appropriate mix of capability and employment possibilities in our economies but also to minimise environmental costs, to improve product specialisation to markets and to ensure resilience of provision under natural and socio-political disruption. This proposal brings together an interdisciplinary academic team to work with industry and local communities to explore the impact of this re-distribution of manufacturing (RDM) at the scale of the city and its hinterland, using Bristol as an example in its European Green Capital year, and concentrating on the issues of resilience and sustainability. The aim of this exploration will be to develop a vision, roadmap and research agenda for the implications of RDM for the city, and at the same time develop a methodology for networked collaboration between the many stakeholders that will allow deep understanding of the issues to be achieved and new approaches to their resolution explored. The network will study the issues from a number of disciplinary perspectives, bringing together experts in manufacturing, design, logistics, operations management, infrastructure, resilience, sustainability, engineering systems, geographical sciences, mathematical modelling and beyond. They will consider how RDM may contribute to the resilience and sustainability of a city in a number of ways: firstly, how can we characterise the economic, social and environmental challenges that we face in the city for which RDM may contribute to a solution? Secondly, what are the technical developments, for example in manufacturing equipment and digital technologies, that are enablers for RDM, and what are their implications for a range of manufacturing applications and for the design of products and systems? Thirdly, what are the social and political developments, for example in public policy, in regulation, in the rise of social enterprise or environmentalism that impact on RDM and what are their implications? Fourthly, what are the business implications, on supply networks and logistics arrangements, of the re-distribution? Finally, what are the implications for the physical and digital infrastructure of the city? In addition, the network will, through the way in which it carries out embedded focused studies, explore mechanisms by which interdisciplinary teams may come together to address societal grand challenges and develop research agendas for their solution. These will be based on working together using a combination of a Collaboratory - a centre without walls - and a Living Lab - a gathering of public-private partnerships in which businesses, researchers, authorities, and citizens work together for the creation of new services, business ideas, markets, and technologies.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right