
Total (France)
Total (France)
4 Projects, page 1 of 1
assignment_turned_in Project2014 - 2017Partners:Total SA, Total (France), Imperial College LondonTotal SA,Total (France),Imperial College LondonFunder: UK Research and Innovation Project Code: EP/L012227/1Funder Contribution: 394,627 GBPThis project aims to reduce the uncertainty and risk associated with key global challenges for the 21st century - securing sustainable access to water, energy and food. The underpinning understanding of natural systems to address this challenge is, in a large part, concerned with storage and extraction from porous rock: this includes safe storage of carbon dioxide to mitigate greenhouse gas emissions, efficient recovery from hydrocarbon reservoirs and groundwater management. Complex geological structures such as carbonate rock contain at least half of the world's conventional oil reserves, and have a significant storage capacity for CO2. The UK strategic energy plans include taking a leading role in enhanced oil recovery and carbon storage in carbonates. The most important UK aquifer is a remarkably pure limestone (calcium carbonate) providing more than half the water supply for drinking and industrial purposes. Transport - a quantitative description of how fluids move - through complex geological structures is absolutely crucial to a rational understanding of these processes in natural systems and yet it is still not fully understood, especially when coupled with chemical reactions. While it is well known that geological systems host physical and chemical processes that span a huge range of spatial and temporal scales, research - to date - has largely focused on understanding the structure of the porous medium, and the macroscopic description of the interplay between flow field, transport and reaction. However the interplay between pore structure, flow field, transport and chemical reaction is unknown. Chemical reaction introduces the next level of complexity that is particularly challenging to quantitatively describe across a hierarchy of length scales. We will address this problem for reactive transport in porous media by combining new experimental Nuclear Magnetic Resonance methods with a novel multiple scale modelling method. This unified approach will have a key advantage in retaining detailed information on localised reactive transport parameters in terms of spatial and temporal distribution functions, rather than only having spatially and/or temporally averaged macroscopic parameters. We will undertake a systematic program of research integrating pore-to-core scale measurements and modelling of reactive transport processes into a unified experimental and theoretical framework aimed at answering the following key questions: * How can we establish a methodology to measure and predict the reactive transport rates within aquifers and reservoirs? * What are relationships between structural, flow, transport and reaction properties governing reactive transport in natural rock? * What are key uncertainties in predicting reactive transport in natural rock in terms of structural, flow, transport and reaction properties? * What impact the transport and reaction physics at the pore scale have on reactive transport at the large scale?
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::84d718b331672693a8dab9d5d53d4fd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::84d718b331672693a8dab9d5d53d4fd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2018Partners:Total (France), University of Leeds, University of Leeds, Total SATotal (France),University of Leeds,University of Leeds,Total SAFunder: UK Research and Innovation Project Code: EP/P012914/1Funder Contribution: 100,664 GBPEnergy and resource losses in moving mechanical components as a result of friction and wear impose an enormous cost on national economies (in the UK the economic impact caused each year by friction and wear is estimated to be ~2% of the gross domestic product, i.e., £25 billion). As one particular example, one-third of the fuel used in passenger cars is employed to overcome friction in the engine, transmission, tyres, and brakes. For a single passenger car, this corresponds to approximately 340 litres of fuel per year, at a cost of £380 according to the average UK gas price in 2015, being spent in overcoming frictional losses. This results in wasted energy and unnecessary environmental emissions. The exploration of new classes of energy-efficient, environmentally-compatible lubricants, which can reduce friction and wear in engines, turbines, microelectronics, etc., is thus becoming increasingly important. In particular, it will be a key factor in attempting to achieve the challenging environmental objective of reducing greenhouse gas emission set during the 2015 UN Climate Change Convention. In the case of passenger cars, as an example, the new fuel efficiency target set by European environment and transport ministers for 2025, i.e., 95 g of CO2 per km (for comparison, the average value in 2014 was 123 g CO2 per km), constitutes a great challenge for scientists and engineers, who are now required to develop novel technical solutions and functional materials to improve car efficiency and decrease their environmental impact. The research in this study will contribute to this by providing novel insights into the physico-chemical basis underlying the promising properties of a class of "green" lubricants, namely ionic liquids (ILs), which have been recently synthesized and proposed as replacements of traditional lubricants or lubricant additives for a variety of applications, including automobile engines, microelectromechanical systems, hard disks, and aerospace. As an example, the low volatility of ILs makes them attractive as additives for engine oils, since the generation of no hazardous volatile compounds avoids blocking filters and catalyst degradation in the exhaust after-treatment systems, a concerning issue for existing lubricant additives. During the course of this research, a fundamental understanding of the mechanism of action of a class of ILs (imidazolium alkyl sulphate/phosphate) will be developed through the nanoscale investigation of their molecular reactivity on solid surfaces under mechanical contact and shear stress. To achieve this, a novel methodological approach, which is based on state-of-the-art advanced surface-analytical techniques with exceptional sensitivity and spatial resolution (including synchrotron-based techniques), will be used. The outcomes of the research, providing a starting point for rationally designing modified ILs with task-specific performance, can lead to the synthesis of energy-efficient, environmentally-friendly lubricants that are suitable for a variety of industrial applications (e.g., automotive, aerospace, microelectronics) and that can enhance sustainability through the reduction of the economic and environmental impact of tribology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b9915713d01f71648d724fd56181728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b9915713d01f71648d724fd56181728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2020Partners:[no title available], University of Sheffield, Eight19 (United Kingdom), University of Sheffield, Eight19 Ltd +2 partners[no title available],University of Sheffield,Eight19 (United Kingdom),University of Sheffield,Eight19 Ltd,Total SA,Total (France)Funder: UK Research and Innovation Project Code: EP/P027814/1Funder Contribution: 762,024 GBPOur research aims to develop plastic films or coatings that change the colour and other characteristics of the light that passes through them, not by absorbing certain wavelengths of light, as a simple colour filter would, but by converting light of one wavelength to another without losing any energy. Solar cells offer an example of why this would be useful: conventional silicon solar cells are more efficient at collecting the energy of red light than they are of blue light. So if we coated the solar cell with a film that would convert every blue photon into two red photons, without losing any energy in the process, in principle we could make the silicon solar cells 30% more efficient. Our previous research at Cambridge has shown in principle how this could be done. Certain organic semiconductors will absorb a blue photon to produce an electron-hole pair, which then splits into two. Normally these two electron-hole pairs would annihilate and the energy would be lost, but if we can arrange for the organic semiconductor to be in molecular contact with an inorganic semiconductor quantum dot, then the electron-hole pairs can migrate to the quantum dot, where they will recombine and emit two red photons. The problem we now want to solve is to work out how to turn this idea into a practical product that we can manufacture on a large scale. We need to be able to make semiconductor nanocrystals that won't clump together, and to coat them with a very thin layer of the organic semiconductor so the two materials are in molecular contact. Then we have to disperse these tiny particles in a clear plastic film, which we can use to coat a solar cell - and the whole process has to be designed so that it doesn't increase the cost or complexity of making the solar cell too much. This coating for solar cells is just one example of the potential there now is for taking the latest materials from the laboratory with novel and interesting optical properties and turning them into useful products. Another example is provided by thin sheets of semiconductors only a few atoms thick. These can be very efficient at absorbing light (for example from a light emitting diode) and reemitting it as a single, purer, colour. This will help us make better optical communication devices and display devices. But once again, we need to learn how to encapsulate and embed these tiny, ultrathin sheets into a plastic film without them sticking together in stacks. The key to solving these manufacturing problems is understanding the factors that make these tiny particles and sheets stick together and what treatments could keep them apart - often this will involve sticking special molecules to their surfaces. In the final products, these particles and sheets will be dispersed in a plastic sheet, and we need to understand how, as the plastic film dries or sets hard, the drying process affects the particles, and whether the processes that take place in the drying film makes the optical effects we're looking for less effective. We will be studying the films we make with techniques that allow us to see the individual molecular layers around the particles, as well as how well the particles are dispersed. In this way we'll understand the rules for manufacturing these sorts of films. By the end of the project, we aim to be able to work with solar cell manufacturers to test our idea in the real world and get to the point where a product can be commercialised. If we are successful, we'll have demonstrated that we can go from understanding the fundamental science of these optical and electronic effects in these new kinds of materials to make useful products that will benefit UK industry and help solve problems of climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::31f9a0775a7ca21611556fa596a77305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::31f9a0775a7ca21611556fa596a77305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2016Partners:Durham University, Chemostrat Ltd., STATOIL PETROLEUM, ConocoPhillips (United Kingdom), Total (France) +9 partnersDurham University,Chemostrat Ltd.,STATOIL PETROLEUM,ConocoPhillips (United Kingdom),Total (France),Equinor (Norway),Equinor (United Kingdom),Petroleum Systems International (UK),Total SA,Chemostrat Ltd,Statoil (UK) Ltd,Petroleum Systems International (UK),Durham University,ConocoPhillips UK LimitedFunder: UK Research and Innovation Project Code: NE/L008343/1Funder Contribution: 43,605 GBPHydrocarbons and their derivative products are central to today's society. We know that the source of hydrocarbons are products of buried ancient plants and animals. Less clear, and question that petroleum geoscientists both academic and industrial are challenged with, is establishing the time that hydrocarbons, such as oil, form and how they are trapped in petroleum systems large enough to be exploited. To address this question of the origin and time of formation of hydrocarbons, the naturally occurring isotopic clock of 187Rhenium-187Osmium present in oil is utilized. This ability to directly date oil and not rely on multi-component models are important because petroleum explorers, need to know the origin of hydrocarbons in a sedimentary basin to constrain where they might be able to accumulate, or whether they are able to accumulate at all. With oil exploration drillholes costing multiple millions of dollars, every piece of data informing site location is of immense worth. Whilst the potential utility of the Rhenium-Osmium system to petroleum systems is now proven, its wide scale application and routine development by industry during exploration is still very much in its infancy. Thus, engagement with industry is needed to develop a portfolio of asset-based case studies needed to improve the understanding of Rhenium-Osmium systematics and assess the general applicability of the method to hydrocarbon-bearing basins worldwide. Work related to Objective (a) (see Objectives section above) will be to create a multi-company (BP, Total, Statoil, ConocoPhillips, Chevron, Shell, Chemostrat) Re-Os Advisory Board (ROAB) with two main purposes (as noted above). Work related to Objective (b) will involve ROAB members to become a strategic partner based on established relationships with companies already engaging in the use of Re-Os; and companies with shared interest in the application of Re-Os system above and beyond its current use. All of the founding ROAB members have global expertise in petroleum exploration and thus compliment, support and develop the PI and Co-I research capabilities establishing a strong-integrated research team, e.g., traditional industrial applied techniques (basin modeling, organic geochemistry) with novel Re-Os geochemistry and fracture network models. Work related to objective (c) includes a 2 workshop hosted by the PIs at Durham which will include a summary of the current knowledge base and will be followed by a think tank session on how the Rhenium-Osmium system can be better understood and developed for the end-user. An Impact Case Study will be developed with the help of a science writer in the Durham University Media Office.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::427bde6da71b38fabe5b84a12a4e3f99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::427bde6da71b38fabe5b84a12a4e3f99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu