
Super Radiator Coils
Super Radiator Coils
2 Projects, page 1 of 1
assignment_turned_in Project2016 - 2020Partners:Rainford Precision Machines, Super Radiator Coils, Thermacore (United Kingdom), Brunel University, Brunel University London +5 partnersRainford Precision Machines,Super Radiator Coils,Thermacore (United Kingdom),Brunel University,Brunel University London,Thermacore Europe Lt,Rainford Precision (United Kingdom),Oxford Nanosystems,Oxford NanoSystems (United Kingdom),Super Radiator CoilsFunder: UK Research and Innovation Project Code: EP/N011112/1Funder Contribution: 431,722 GBPThis proposal is for a joint project between internationally-leading, UK heat transfer research groups at the Universities of Edinburgh, Brunel and Queen Mary, London in collaboration with four industrial partners (Thermacore, Oxford Nanosystems, Super Radiator Coils and Rainford Precision) in the areas of micro-fabrication and thermal management. Advances in manufacturing processes and subsequent use of smaller scale electronic devices operating at increased power densities have resulted in a critical demand for thermal management systems to provide intensive localised cooling. To prevent failure of electronic components, the temperature at which all parts of any electronic device operates must be carefully controlled. This can lead to heat removal rate requirements averaging at least 2 MW/m2 across the complete device, with peak rates of up to 10-15 MW/m2 at local 'hot spots'. Direct air cooling is limited to about 0.5 MW/m2 and liquid cooling systems are only capable of 0.7 MW/m2. Other techniques have not yet achieved heat fluxes above 1 MW/m2. Boiling in microchannels offers the best prospect of achieving such high heat fluxes with uniform surface temperature. In a closed system an equally compact and effective condenser is required for heat rejection to the environment. At high heat flux, evaporator dry-out poses a serious problem, leading to localised overheating of the surface and hence potentially to burn out of electronic components reliant on this evaporative cooling. Use of novel mixtures, termed 'self-rewetting fluids', whose surface tension properties lend themselves to improved wetting on hot surfaces, potentially offers scope for enhanced cooling technologies. In this project, two different aqueous alcohol solutions (one of which is self-rewetting) will be studied to ascertain whether they can provide the necessary evaporative and condensation characteristics required for a closed-loop cooling system capable of more than 2 MW/m2. Researchers at the University of Edinburgh will study the fundamentals of wetting and evaporation/condensation of the mixtures to establish the optimum mixture concentrations and heat transfer surface coating for both evaporation and condensation, using advanced imaging techniques. At Brunel University London, applications of the fluids in metallic single and multi microchannel evaporators will be investigated. Researchers at Queen Mary University London will carry out experimental and theoretical work on condensation of the mixtures in compact exchangers. The combined results will feed into the design of a complete microscale closed-loop evaporative cooling system. Thermacore will provide micro-scale heat exchangers and Oxford Nanosystems will provide structured surface coatings. Sustainable Engine Systems, Super Radiator Coils and will provide advice and represent additional ways of taking developments originating from this research to the market. Rainford Precision will provide Brunel University micro tools and support on their use in micromachining.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9664e0d1c83e4f99f99a34fee11179b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9664e0d1c83e4f99f99a34fee11179b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:Wellman Furnaces Ltd, IHI Europe Ltd., Super Radiator Coils, University of Glasgow, DRD Power (United Kingdom) +5 partnersWellman Furnaces Ltd,IHI Europe Ltd.,Super Radiator Coils,University of Glasgow,DRD Power (United Kingdom),Super Radiator Coils,Wellman Furnaces Ltd,IHI Europe Ltd.,DRD Power Ltd,University of GlasgowFunder: UK Research and Innovation Project Code: EP/N020472/1Funder Contribution: 713,033 GBPThe UK has set an ambitious target to cut its greenhouse gas emissions by at least 80% by 2050, relative to 1990 levels. Currently, heat accounts for nearly half of the energy consumption in the UK and a third of the nation's carbon emissions. To achieve the UK's carbon reduction target, the residential heating sector has to be substantially decarbonised. A wide range of technologies are at different stage of developments but their energy efficiencies are not all satisfactory. There is clearly a big gap between the demand and supply of cost-effective heating technologies in the UK. There is a urgent need for innovation of low-carbon heating technologies in the UK. This project develops a novel, gas-powered heat pump that integrates a small-scale Rankine Cycle power generator using organic working fluids (i.e. refrigerants) with a vapour-compression heat pump by means of a novel coupling technology. Both the heat rejected by the Rankine Cycle power generator and the heat provided by the heat pump are fully utilised for heating. The novel design allows the condensing temperature of the heat pump to be much lower than that of a single electrically-powered heat pump leading to much higher energy performance. The compact heat exchangers are used to enable the heat pump much small in size. The novel design of the combustion heat exchanger enables efficient and clean combustion processes. The novel heating technology developed through this project is much more efficient than traditional heating technologies, and therefore can significantly reduce the carbon emissions from the residential heating sector in the UK, if widely installed.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137a9c8405233b4c037962acce35b976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137a9c8405233b4c037962acce35b976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu