
Ossur
6 Projects, page 1 of 2
assignment_turned_in Project2016 - 2019Partners:Össur (Iceland), Newcastle University, Ossur, Newcastle UniversityÖssur (Iceland),Newcastle University,Ossur,Newcastle UniversityFunder: UK Research and Innovation Project Code: EP/N023080/1Funder Contribution: 240,010 GBPEach year, over 5400 UK patients are referred to lower limb prosthesis clinics (2011), of whom over 90% are below- or above-knee amputees. The main causes of amputation are diabetes, limb dysvascularity (loss of blood supply), accidents and injury in the battlefield. Prosthetic legs have the potential to dramatically improve the mobility, confidence and the quality of life of users. With an effective prosthetic solution, users can be independent in their daily living, e.g. walking, stair climbing and potentially running. In addition, advanced prosthetic legs enable amputees to improve their posture which in turn has a positive effect on reducing wear-and tear on their unaffected joints. However, individuals with lower-limb amputation lack the nervous structures associated with the foot and ankle from the prosthesis and, compared with able-bodied individuals, suffer from lack of stability. Technologies do not exist for targeted delivery of feedback information from the prosthesis to the nervous system. As part of the EPSRC-funded SenseBack project, a highly-experienced team of UK researchers are developing a number of key technologies to restore sensation to the individuals using prosthetic hands. The proposed translational Alliance between Newcastle University and Össur (www.ossur.com) will facilitate translation of the the technologies developed in the SenseBack project to lower-limb prostheses. With Össur, within the next decade, we aim to create an artificial leg that can generate mechanical power, adapt autonomously to the user's changing needs and also provide feedback to the user regarding the state of the limb and the prosthesis.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::abb01728490f98659d1c8a3699223942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::abb01728490f98659d1c8a3699223942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2019Partners:Ossur, Dorset Orthopaedic Co(Ottobock Ltd), Össur (Iceland), Dorset Orthopaedic Co(Ottobock Ltd), UWE +1 partnersOssur,Dorset Orthopaedic Co(Ottobock Ltd),Össur (Iceland),Dorset Orthopaedic Co(Ottobock Ltd),UWE,University of the West of EnglandFunder: UK Research and Innovation Project Code: EP/P022588/1Funder Contribution: 101,089 GBPAt present there are over 90,000 new cases of knee replacements and leg amputations every year in the UK alone. This is equivalent to approximately one every six minutes. Currently between 5 - 6,000 major limb amputations are performed in the UK each year and trauma accounts for approximately 55% of them. Lower limb amputation has a profound effect on activities of daily living and not all amputees are able to tolerate or use a prosthesis. Therefore, it is essential that the prosthesis is comfortable and adapted to be used by patients in order to enhance their daily activities. Artificial knee joints are important medical devices that enable many people to maintain walking and running functions. In working towards this target, researchers have repeatedly missed the key role held by the correlation between the soft tissues (ligaments) and the structure (bones) in human-like locomotion. Biological joints demonstrate multi-functionality by integrating high conformity, compactness and low friction. These functions are crucial when designing a functional and robust joint by including this separation of functions at the conceptual stage. Though there is still little known about the exact implications and mechanisms involved while performing human movement, recent engineering research into the mechanics of the ligaments and the analysis of the knee joint in compression has produced models and simulations that have shed light on some of the possible roles of the human knee features. Therefore, we believe that this separation of functions into the design process of prosthetic joint is essential to facilitate design optimisation. Researchers are actively engaged in developing wearable devices including prosthetics that are increasingly embedding control and electronics sub-systems making them more autonomous and 'smarter'. On the other hand, limitations on space and power mean that artificial limb joints (for robots or prosthetics) must be highly optimised for mechanical performance in areas such as stiffness, strength, friction, mechanical advantage, backlash and endurance. Current trends in the design of artificial lower limbs, ranging from robotic articulations to prostheses for lower limb amputees, favour the utilisation of engineered joints, which typically are composed of a pin joint containing a hinge-pin and ball bearings. Particular prosthetic knee joints (polycentric) contain four-bar mechanisms in order to produce a moving centre of rotation as is the case with the human knee. There are two main categories of control for prosthetic knee joints - microprocessor control (use of an electronic unit, evaluating and making internal adjustments to control the motion) and mechanical control (use of a mechanical hinge, automatically controlled by the mechanism). The main purpose of this work is to further the state-of-the-art in prosthetics design and lower robotic limbs for transfemoral (above knee) amputees and humanoids robots in areas relevant to artificial devices and their uses for locomotion including walking, climbing stairs, squatting and also stability. This research will combine the relationship between three areas: the technological advancements of lower robotic limbs, knee implant design for total knee replacement, and the emergence of 'smart' prosthetics. In this two-year programme, we will investigate the feasibility and development of a novel bio-inspired prosthetic joint that will exploit the key and beneficial features of human knee joint. This research will be achieved by featuring a progressive bottom up approach towards the design and test of the bio-inspired 'smart' joint. A comparative investigation with respect to human performance (energy consumption and gait efficiency) between the novel bio-inspired joint against current prosthetics provided by the industrial partners will be undertaken with the contribution of a para-triathlete gold medallist in the Rio Paralympics 2016.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0e59ad6e677ab8bac76fd3760f3f1f8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0e59ad6e677ab8bac76fd3760f3f1f8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2024Partners:Össur (Iceland), Opcare Limited, Opcare Limited, Ossur, Freeman Group of Hospitals NHS Trust +5 partnersÖssur (Iceland),Opcare Limited,Opcare Limited,Ossur,Freeman Group of Hospitals NHS Trust,Salford Royal NHS Foundation Trust,UCL,University of Edinburgh,Freeman Hospital,Salford Royal NHS Foundation TrustFunder: UK Research and Innovation Project Code: EP/R004242/2Funder Contribution: 712,797 GBPWorldwide, there are over three million people living with upper-limb loss. Recent wars, industrialisation in developing countries and vascular disease, e.g. diabetes, have caused the number of amputations to soar. Adding to this population each year, one in every 2,500 people are born with upper-limb reduction. Advanced prostheses can play a major role in enhancing the quality of life for people with upper-limb loss, however, they are not available under the NHS. Notably, many people with traumatic limb loss are otherwise physically fit. If they are equipped with advanced prostheses and treated to recover psychologically, they can live independently, with minimal need for social support, return to work and contribute to the economy. There are a plethora of underlying reasons that limit wide clinical adoption of advanced prosthetic hands. For instance, surveys on their use reveal that 20% of upper-limb amputees abandon their prosthesis, with the primary reason being that the control of these systems is still limited to one or two movements. In addition, the process of switching a prosthetic hand into an appropriate grip mode, e.g. to use scissors, is cumbersome or requires an ad-hoc solution, such as using a smart phone application. Other reasons include: users finding their prosthesis uncomfortable or unsuitable for their needs. As such, everyday tasks, such as tying shoe-laces, are currently very challenging for prosthetic hand users. These functional shortcomings, coupled with high costs and lack of concrete evidence for added benefit, have emerged as substantial barriers limiting clinical adoption of advanced prosthetic hands. The long-term aim of this cross-disciplinary programme is to develop, and move towards making available, the next generation of prosthetic hands that can improve the users' quality of life. Our underlying scientific novelty is in utilising users' capability of learning to operate a prosthesis. For instance, we examine the extent to which the activity of muscles can deviate from natural patterns employed in controlling movement of the biological arm and hand and whether prosthesis users can learn to synthesise these functional maps between muscles and prosthetic digits. Basing this approach upon our pilot data, we hypothesise that practice and availability of sensory feedback can accelerate this learning experience. To address this fundamental question, we will employ in-vivo experiments, exploratory studies involving able-bodied volunteers and pre-clinical work with people with limb loss. The insight gained from these studies will inform the design of novel algorithms to enable seamless control of prosthetic hands. Finally, the programme will culminate with a unifying theory for learning to control prosthetic hands that will be tested in an NHS-approved, pre-clinical trial. Maturing this approach into a clinically-viable solution needs a dedicated team of engineers and scientists as well as a consortium of users, NHS-based clinicians and healthcare and high-tech industries. With the flexibility that a Healthcare Technologies Challenge Award affords me, I will be able to nurture and grow sustainably my multi-disciplinary team. In addition, this flexible funding will enable to focus on a converging research programme with the ultimate aim of providing prosthetic solutions that enhance NHS-approved clinical patient outcome measures significantly. Within this programme, I will identify and bring together the engineering, scientific, clinical, ethical and regulatory elements necessary to form a recognised national hub for the development of next-generation prosthetics. This work will provide the foundations for my 15-year plan to establish the Centre for Bionic Limbs. The origin of this Centre will be to act as a mechanism to safeguard engineering and scientific innovations, increase value, and accelerate transfer into commercial and clinical fields.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::23a8739f0daf1e9998d215e7bba9dd57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::23a8739f0daf1e9998d215e7bba9dd57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2020Partners:UCL, Opcare Limited, Newcastle University, Opcare Limited, Salford Royal NHS Foundation Trust +6 partnersUCL,Opcare Limited,Newcastle University,Opcare Limited,Salford Royal NHS Foundation Trust,Ossur,Salford Royal NHS Foundation Trust,Newcastle University,Össur (Iceland),Freeman Hospital,Freeman Group of Hospitals NHS TrustFunder: UK Research and Innovation Project Code: EP/R004242/1Funder Contribution: 1,028,680 GBPWorldwide, there are over three million people living with upper-limb loss. Recent wars, industrialisation in developing countries and vascular disease, e.g. diabetes, have caused the number of amputations to soar. Adding to this population each year, one in every 2,500 people are born with upper-limb reduction. Advanced prostheses can play a major role in enhancing the quality of life for people with upper-limb loss, however, they are not available under the NHS. Notably, many people with traumatic limb loss are otherwise physically fit. If they are equipped with advanced prostheses and treated to recover psychologically, they can live independently, with minimal need for social support, return to work and contribute to the economy. There are a plethora of underlying reasons that limit wide clinical adoption of advanced prosthetic hands. For instance, surveys on their use reveal that 20% of upper-limb amputees abandon their prosthesis, with the primary reason being that the control of these systems is still limited to one or two movements. In addition, the process of switching a prosthetic hand into an appropriate grip mode, e.g. to use scissors, is cumbersome or requires an ad-hoc solution, such as using a smart phone application. Other reasons include: users finding their prosthesis uncomfortable or unsuitable for their needs. As such, everyday tasks, such as tying shoe-laces, are currently very challenging for prosthetic hand users. These functional shortcomings, coupled with high costs and lack of concrete evidence for added benefit, have emerged as substantial barriers limiting clinical adoption of advanced prosthetic hands. The long-term aim of this cross-disciplinary programme is to develop, and move towards making available, the next generation of prosthetic hands that can improve the users' quality of life. Our underlying scientific novelty is in utilising users' capability of learning to operate a prosthesis. For instance, we examine the extent to which the activity of muscles can deviate from natural patterns employed in controlling movement of the biological arm and hand and whether prosthesis users can learn to synthesise these functional maps between muscles and prosthetic digits. Basing this approach upon our pilot data, we hypothesise that practice and availability of sensory feedback can accelerate this learning experience. To address this fundamental question, we will employ in-vivo experiments, exploratory studies involving able-bodied volunteers and pre-clinical work with people with limb loss. The insight gained from these studies will inform the design of novel algorithms to enable seamless control of prosthetic hands. Finally, the programme will culminate with a unifying theory for learning to control prosthetic hands that will be tested in an NHS-approved, pre-clinical trial. Maturing this approach into a clinically-viable solution needs a dedicated team of engineers and scientists as well as a consortium of users, NHS-based clinicians and healthcare and high-tech industries. With the flexibility that a Healthcare Technologies Challenge Award affords me, I will be able to nurture and grow sustainably my multi-disciplinary team. In addition, this flexible funding will enable to focus on a converging research programme with the ultimate aim of providing prosthetic solutions that enhance NHS-approved clinical patient outcome measures significantly. Within this programme, I will identify and bring together the engineering, scientific, clinical, ethical and regulatory elements necessary to form a recognised national hub for the development of next-generation prosthetics. This work will provide the foundations for my 15-year plan to establish the Centre for Bionic Limbs. The origin of this Centre will be to act as a mechanism to safeguard engineering and scientific innovations, increase value, and accelerate transfer into commercial and clinical fields.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2e07d768165bcb2e93cec4c63fc2fd84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2e07d768165bcb2e93cec4c63fc2fd84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2023Partners:Great Lakes NeuroTechnologies (United States), Johnson & Johnson (United Kingdom), Imperial College London, US Navy, Cortexica Vision Systems Ltd +37 partnersGreat Lakes NeuroTechnologies (United States),Johnson & Johnson (United Kingdom),Imperial College London,US Navy,Cortexica Vision Systems Ltd,Vertex Pharmaceuticals Inc,Neural Signals (United States),Parkinsons Disease Society,GSK,GlaxoSmithKline PLC,J&J,The Michael J Fox Foundation for Parkins,Scientifica (United Kingdom),Ossur,Elekta (Sweden),GlaxoSmithKline (United Kingdom),Medfield Diagnostics (Sweden),Elekta Instrument AB,Scientifica Limited,The Francis Crick Institute,Stryker Neurovascular,BioRobots LLC,Stryker Neurovascular,Sapiens Steering Brain Stimulation BV,Vertex Pharmaceuticals (United States),Michael J. Fox Foundation,Cortexica (United Kingdom),Össur (Iceland),e(ye)BRAIN,Medtronic (Netherlands),Parkinson's UK,Integra Life Sciences,Great Lakes NeuroTechnologies,Johnson & Johnson Ltd,The Francis Crick Institute,Neural Signals Inc,e(ye)BRAIN,Medfield Diagnostics AB,Integra Life Sciences,BioRobots LLC,United States Department of the Navy,The Francis Crick InstituteFunder: UK Research and Innovation Project Code: EP/L016737/1Funder Contribution: 4,233,460 GBPNeurotechnology is the use of insights and tools from mathematics, physics, chemistry, biology and engineering to investigate neural function and treat dysfunction; and additionally, the development of novel technology inspired by neuroscience. Brain-related illnesses affect more than two billion people worldwide, and add an annual burden which has been estimated to exceed $US 2.2 trillion. This is exacerbated by the aging societal demographic in most industrialized nations, including the UK: many brain disorders, such as dementia, are closely linked to age. There is a real need to solve this problem before it becomes an impossible burden for the economy to carry. The Centre for Doctoral Training in Neurotechnology for Life and Health will train a unique cadre of multidisciplinary researchers, who will combine an understanding of their neuroscience problem with skills in technology development, to make groundbreaking advances in our ability to treat brain disorders and to improve the quality of life and health in the UK. There is a strong need for such a pool of researchers in the UK now. Advances in treatments for brain disorders have to date relied largely upon a purely pharmaceutical approach, however the development of completely new drugs has slowed to a trickle as we have run into the "wall of complexity" where the cost of finding new drugs which do not have intolerable side effects becomes insurmountable. "High throughput" approaches have only pushed this wall back a year or two - as Peter Mueller of Vertex commented to us, "we need to shift our thinking from high throughput to high content". Our industry partners have emphasized to us that a new, engineering-driven approach is needed, to develop new solutions for uncovering that content. A key driver behind the development of this CDT bid has been the need for PhD level graduates with a multidisciplinary training, who bring with them both a detailed understanding of a translational neuroscience question, and the strong background in technology development needed to develop solutions. Our industry partners have all emphasized that the lack of availability of such researchers is currently a major limiting factor in their development prospects. By addressing this skills shortage, the CDT will have a major long-term impact on our ability to intervene in brain disorders, enhancing both academic and industrial research efforts to find solutions. "There is an unmet requirement for PhD graduates with a combined expertise in engineering and neuroscience and the proposed CDT in Neurotechnology will help to address this shortage" Jonas Gårding, Research & Physics Director Neuroscience, Elekta Instrument AB "The program that you propose to develop at the interface of neuroscience and engineering will produce PhD graduates with the potential to make major contributions to our research objectives" Kris Famm, PhD, VP Bioelectronics R&D, GlaxoSmithKline "We believe that the research conducted at the centre will have the potential to have a significant impact on the Parkinson's research field and ultimately on the lives of Parkinson's patients" Dr Kieran Breen, Director of Research and Innovation, Parkinson's UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::95fdecbafd1bacc9d3f79419703ad60c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::95fdecbafd1bacc9d3f79419703ad60c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right