Powered by OpenAIRE graph
Found an issue? Give us feedback

Scottish and Southern Energy (United Kingdom)

Scottish and Southern Energy (United Kingdom)

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/X025322/1
    Funder Contribution: 4,340,130 GBP

    This Prosperity Partnership (PP) is a direct response to the growing local, national and international consensus that climate change should be treated as an emergency and that as a key part of this, the energy system must be transformed. Fundamental change is needed if energy system transformation is to be achieved. The UK will only be successful if the many parties involved - government at all levels, regulators, innovators, industry, investors, consumers and citizens - are engaged, empowered and equipped to make properly informed decisions in a timely manner. These decisions span the whole energy system: across the energy value chain - from generation to delivery to use; across the vectors and sectors - heat, transport, power, industry; and across technology, business models, markets, policy and regulation. Critically needed decisions must account for the complex interactions, interdependencies and trade-offs between these aspects of the whole energy system. The complexity and uncertainty of the environment in which these decisions must be made require new approaches. Digital Twins are much talked about as playing a role. This PP will take "whole system thinking" to "whole system action"; it will move Digital Twins from possibility into reality where they are being used by a network operator to deliver transformation and realise good climate, economic and social outcomes across the stakeholder community. The novelty of this work can be expressed in several ways: The creation of a Digital Twin that spans and INTEGRATES multiple vectors - electricity, heat, hydrogen and industry - to enable system level insights to be gained, questions to be answered and decision making to be supported The creation of an architecture that facilitates the integration of multiple energy vectors in a consistent and coherent way so that a whole system view is obtained, not separate views of separate "siloes". The development of new techniques using sophisticated modelling, Artificial Intelligence and Machine Learning in innovative ways; this will generate Intellectual Property that progresses use of Digital Twins closer to "Business As Usual". Application of the principle of openness so that enhancement, extension and integration with other Digital Twins is made easier thereby strengthening the ability to transform, and to do so at greater pace and with lower risk. An iterative development approach which enables adaptation to respond to learnings gained in the course of the PP and from advancements in the art and science of Digital Twins and from the process of transformation happening in the sector. Specific goals and commitments are in front of us and with little time to deliver on them. We have committed to a Net Zero Power system in 2035 subject to security of supply. We have declared a British Energy Security Strategy which depends upon a multi-vector approach. How do we know a Net Zero Power System in 2035 is possible and that it will work? How can we have comfort that security of supply can be reasonably assured? How do we know what trade-offs between vectors will be needed to deliver the best possible outcomes? How can we align the efforts of all players in the sector to deliver what is needed? An integrated Digital Twin - the key focus of this PP - will help do this. It will enable people to form a shared view of the future system and its operation. It will provide a way for stakeholders from different vectors to discuss and solve problems using a common reference point and language. It will help innovators see the context for their good ideas. It will help investors see opportunities and price risk. It will support people make decisions that are too complex for the human mind to make without the assistance of sophisticated capabilities to support them. This PP delivers that capability and importantly, does so in the context of the industry - connecting research, innovation and real-world applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X031144/1
    Funder Contribution: 707,337 GBP

    Renewable power is one of the main drives to achieve carbon reduction and net-zero, and to meet the ambitious climate goals. In particular, offshore wind power in Europe has been developing at a rapid pace in recent years. Multi-Giga watts offshore wind farms with larger wind turbine power ratings, floating wind turbines installed in deeper water areas, and higher ratio of renewables integrated to existing power grids, are fundamentally changing power system operations and bringing new challenges and technical demands. This industry-doctorate consortium, ADOreD, will recruit and train 15 Researchers by collaborating with 19 academic and industrial organisations. It aims to tackle the academic and technical challenges in the areas of transmission of offshore wind power to the AC grid by using power electronics-based AC/DC technologies. In doing so, it will equip the Researchers, through their PhD studies, with essential knowledge and skills to face fast energy transition in their future careers. The project covers 3 key research aspects: offshore wind (including wind turbines, wind power collection, and wind farm design and control); DC technologies (including AC/DC converters, HVDC control and DC network operation and protection); and AC grid (including stability and control of AC grids dominated with converters under various control modes. The ADOreD consortium has excellent coverage of academic universities and industry organisations including manufacturers, energy utilities, system operators, consultancy and technology innovation centres. All the research questions in the project reflect industry needs; academic novelty and innovation will be reflected in the methodologies and solutions; and the research results will be disseminated directly to the industry partners' products, grid operation and services. The outcomes of the project are both technologies and a talent pool to accelerate the deployment and grid integration of large-scale offshore wind power.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y035119/1
    Funder Contribution: 6,236,880 GBP

    A consortium of the Universities of Edinburgh, Exeter, Strathclyde and Swansea supported by the Scottish Association for Marine Science (SAMS) will run the Industrial Centre for Doctoral Training for Offshore Renewable Energy (IDCORE). This partnership offers a unique combination of experience in research, development and knowledge-exchange with major industry stakeholders in the Offshore Renewable Energy (ORE) sector. This is complemented by the extensive experience with ORE projects of both SAMS, in the environmental and societal impacts, and the Fraser of Allander Institute (Strathclyde), in macro- and micro-economics. The large scale deployment of ORE technologies is key to the UK achieving its net-zero carbon energy objectives while, at the same time, delivering secure, reliable and affordable energy. Both of these objectives must be achieved with minimal environmental impact. This requires the continuing development of new techniques and technologies to design, build, install, operate, and maintain energy generating machines in a hostile marine environment. Successful ORE projects must be affordable and minimise their environmental impact. Success will create green jobs at all levels in coastal communities across the UK and generate significant economic impact. The ORE sector, which includes companies ranging from world-leading technology development SMEs (like Orbital Marine Energy and MOcean Energy) through to international energy companies as well as engineering majors, consulting engineers and project developers, is creating a massive demand for highly trained scientists and engineers with a broad skill base. The consortium is ideally-placed to support the industry in meeting these challenges through a conjoined infrastructure, which begins in some of the best academic research centres with leading test facilities and extends through a unique combination of demonstration facilities, ultimately to test and deployment sites. IDCORE will conduct internationally leading research, provide a vibrant training environment and deliver a body of high-quality post-doctoral staff for the sector. This proposal presents a revised training programme in response to changes in the sector (particularly the rapid growth of offshore wind, the commercialisation of tidal stream energy, and the drive to develop floating wind systems for deeper water). It also includes Swansea University for the first time, strengthening our links to developments in the Celtic Sea and bringing significant expertise in computational modelling and aerodynamics. IDCORE provides a solid background in professional, technical and transferable skills to a diverse cohort of students drawn from a wide variety of STEM backgrounds. It is designed to deliver a tightly-knit cohort of highly-skilled graduates, forming a strong foundation for the future development of the sector. Our training is innovative and multi-disciplinary, using a variety of delivery methods and unique facilities, including: the Kelvin hydrodynamics lab, FastBlade, the FloWave Ocean Energy Research Facility, offshore measurement systems (Wave and ADCP measurement array and surveying), the South West Mooring Test Facility, accelerated fatigue testing facilities (DMAC), survey vessels and field study areas. Through established links with partner organisations including the ORE Catapult and the European Marine Energy Centre (EMEC), students will be placed and, wherever possible, site-trained in large-scale test facilities, prototype demonstration and small-farm demonstration sites. The training will also benefit from the extensive experience of the consortium in advanced engineering analysis and simulation, and access to UK-leading computational facilities. The training package offered by the centre provides our students with unparalleled engineering experience in applied offshore renewable energy R&D.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.