Powered by OpenAIRE graph
Found an issue? Give us feedback

TRE

TRE ALTAMIRA SRL
Country: Italy
7 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101004188
    Overall Budget: 3,999,690 EURFunder Contribution: 3,999,690 EUR

    DeepCube leverages advances in the fields of AI and semantic web to unlock the potential of big Copernicus data. DeepCube is impact driven; our objective is to address new and ambitious problems that imply high environmental and societal impact, enhance our understanding of Earth’s processes, correlated with Climate Change, and feasibly generate high business value. To achieve this we bring mature and new ICT technologies, such as the Earth System Data Cube, the Semantic Cube, the Hopsworks platform for distributed DL, and a state-of-the-art visualisation tool tailored for linked Copernicus data, and integrate them to deliver an open and interoperable platform that can be deployed in several cloud infrastructures and HPC, including DIAS environments. We then use these tools to develop novel DL pipelines to extract value from big Copernicus data. We implement a shift in the use of AI pipelines. DeepCube 1) develops novel DL architectures that extend to non-conventional data and problems settings, such as interferometric SAR, social network data, and industrial data, 2) introduces a novel hybrid modeling paradigm for data-driven AI models that respect physical laws, and 3) opens-up the DL black box through Explainable AI and Causality. We showcase these in five Use Cases (UC), two business, two on earth system sciences, and one for humanitarian aid. These are: UC1: Forecasting localized extreme drought and heat impacts in Africa, UC2: Climate induced migration in Africa, UC3: Fire hazard short-term forecasting in the Mediterranean, UC4a: Automatic volcanic deformation detection and alerting and UC4b: Deformation trend change detection on PSI time-series for critical infrastructure monitoring, UC5: Copernicus services for sustainable and environmentally-friendly tourism.

    more_vert
  • Funder: European Commission Project Code: 242332
    more_vert
  • Funder: European Commission Project Code: 242535
    more_vert
  • Funder: European Commission Project Code: 101138456
    Funder Contribution: 5,777,170 EUR

    The MINEYE (Earth Observation techniques for MINe lifE cYclE monitoring using ML-based data fusion approaches) consortium consists of 13 partners from nine European countries and aims to strengthen EU autonomy in primary and secondary raw materials, at the same time as reducing environmental impact. This is done by development of innovative cost-effective, time-efficient and competitive Earth Observation (EO) based methodologies and technologies for the entire mining value chain. MINEYE will integrate EO data with other data sources such as EuroGeoSource, ProMine, EGDI and will collect new EO, remote sensing, geophysical and in-situ data. MINEYE aims at developing novel data fusion and processing algorithms for EO technologies for the mineral exploration, operational, closure and post-closure stages. MINEYE unlocks the potential of EO data, including Copernicus, commercial satellites, upcoming hyperspectral missions, airborne as well as in situ data. This is achieved by creating generic innovative machine learning algorithms tailored to solve specific needs within the mining value chain. MINEYE’s overall objective and ambition is to increase the access to critical and strategic minerals and metals in Europe with full consideration of environmental and social aspects, by providing the mining industry with proven and validated solutions for uptake of EO data and technology. MINEYE's final product is a web-interface, IPOP (Interfacing, Programming and Optimisation Platform) for providing data and result. IPOP has three outputs each covering a specific part of the mining value chain: (1) methods for Mineral Prospectivity Mapping (2) EO plugin for LiquidEarth software for 3D modelling, (3) evaluation and maps of re-mining potential and tailings characterization. In addition, ground stability assessment and environmental monitoring are included to support the development of a socially responsible mining. IPOP further serves as a multi-criteria decision-making tool.

    more_vert
  • Funder: European Commission Project Code: 242212
    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.