Powered by OpenAIRE graph
Found an issue? Give us feedback

NEF

National Energy Foundation
Country: United Kingdom
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
10 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/H009612/1
    Funder Contribution: 5,814,410 GBP

    Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F007604/1
    Funder Contribution: 2,726,670 GBP

    Global warming is a serious threat to mankind and is exacerbated by the release of greenhouse gases, in particular carbon dioxide. In the UK, as in other developed counties, buildings, and the activities in them, and transport generate significant carbon emissions: in the UK buildings 47% and transport 23%, and rising significantly. The UK has legally binding targets to reduce greenhouse gas emissions and has an intention to cut national CO2 emissions by 60% by 2050. The sequestration of carbon by living plants can 'lock' carbon in soils and ameliorate carbon dioxide emissions. In the UK about 80% of the population live in cities and other urban areas and these are continually expanding. One way to represent carbon emissions from different sources and to compare them is to calculate the carbon footprint. This can be done for an individual, a household, a city (or a country). There are however some difficult problems to be overcome in order to do this.The 4M project will then calculate the carbon footprint of the entire city of Leicester by:* Measuring the carbon released by traffic, and by the burning of fossil fuels in homes and places of work and the rate at which green plants and trees capture carbon and lock it in the soil;* Modelling the effects on carbon budget of road layouts, traffic volumes and traffic speeds, the way we use energy in our homes and places of work; and the way we look after green spaces;* Mapping the sources and sinks of carbon for the whole city and comparing this with the social and economic well-being of its 270,000 inhabitants; and* Management studies which will investigate how to shrink the city's carbon footpring through: changing the road network and/or the provision of better public transport; alterations to the maintenance of green spaces and the treatment of waste; the use of renewable and low energy systems to provide power and light; and the operation of individual Carbon Trading (ICT) schemes.ICT schemes give a limited carbon emissions allocation to individuals. People must emit less carbon dioxide than their limit or buy more credits. The tradeoffs that people might make, eg travelling less or buying renewable energy, will be studied. This will be one of the first studies to explore the likely impact of such schemes on the life-styles and well-being of city dwellers. The project consortium consists of the Institute of Energy and Sustainable Development (IESD) at De Montfort University the Institute for Transport Studies (ITS) at the University of Leeds and the Biodiversity and Micro-ecology Group (BIOME) at Sheffield University. It is supported by both central and local government representatives and contributors form various organisations concerned with the future, more sustainable development, of cities in the UK and overseas.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K002732/1
    Funder Contribution: 1,747,820 GBP

    Reducing energy demand from existing dwellings through occupant behaviour change is crucial for meeting UK carbon emission reduction targets. Dwellings account directly for 32% of UK energy consumption, and corresponding carbon emissions. While there are many reduction efforts aimed at new-build, a focus on existing dwellings is essential: 80% of the dwellings that will be in place in the UK in 2050 are already built. Attention to behaviour change is important - behavioural differences are estimated by DECC to account for 60% of the variance in demand. Demand related to heat is key - 80% of domestic energy demand is for heating. Using an interdisciplinary conceptual framework, our team of computer scientists, building engineers and sociologists will work together to explore the interaction of energy technologies and householder energy behaviours. For the first time household energy demand will be able to be analysed in great detail across a large number of homes and the effect of behavioural feedback evaluated over a multi-year period. The Smart Meter rollout planned to be complete by 2020 is intended to encourage householders to reduce their energy demand. These meters and the associated monitors create a feedback loop to householders in which energy-consumption information from the meters is provided to the householder on the monitor in the hope that this will cause him or her to change behaviours to reduce the amount of energy used, or the amount of money spent on energy, or the associated carbon emissions. This project's main goal is to construct an enhanced feedback loop which provides information to householders not just on their energy consumption, but also on what activities they are using energy, how much for each one, together with suggestions for what they might do to reduce their energy expenditure and use. We would hope to be able to tell the householder things like: "Last week you spent £10 on hot water for showers", or "Yesterday you spent £4 on heating your flat, if you turned off the heating at night you would probably have only spent £3 - you could save around £250 a year by doing this". We will construct this feedback loop and evaluate its effectiveness compared to standard Smart Meter type feedback by involving hundreds of households in a study over a three year period. We will involve a variety of types of households including single people, multi-adult dwellings, and families, and expect to have participants across income brackets. The feedback loop will use small unobtrusive wireless sensors in the dwellings to record data and transmit it over the internet to a large secure database; and a tablet PC to provide information back to householders. The data will be processed by software to tell the occupants how much energy, carbon and money they are spending on which energy-related activities - for example over the last day, week, month, and year. This feedback loop will run for several years (up to 3) and will provide the participants with a wealth of information that they can use to reduce their energy expenditure. We will compare how effective this feedback is with that provided by Smart Meters, that does not break down energy use into the important energy-using behaviours (particularly for gas use). At the end of the study we will ask participants if we can use the data we have gathered, with all personal information removed, in future studies. Those that agree will be contributing to a database that will be invaluable for future research efforts by us and others. If we can show that this loop is effective in helping people to reduce their energy demand, then we expect that energy suppliers and other companies will start to offer it as a service to households to help them keep their energy costs down. This will contribute to reducing energy poverty as well as the challenge of meeting UK 2050 carbon emission targets.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L01517X/1
    Funder Contribution: 4,332,170 GBP

    Addressing climate change through reducing carbon emissions is a crucial international goal. End use energy demand (EUED) reduction is essential for the UK to meet its legally binding 80% carbon reduction target and has significant economic and social benefits: it lowers the operating costs of businesses, increasing their competitiveness, and reduces the fuel bills for home owners, guarding against fuel poverty and improving quality of life. Government, industry and academia recognise the importance of EUED reduction and are responding by developing new policies, products and services. However, there is a shortage of highly trained individuals who will spearhead these initiatives. Recognising this, the Engineering and Physical Science Research Council (EPSRC) has identified EUED in buildings, transport and industry as a priority funding area for the development of a Centre for Doctoral Training (CDT). For the last 4 years, the UCL Energy Institute and the School of Civil and Building Engineering at Loughborough, have run a successful CDT: the London-Loughborough Centre for Doctoral Research in Energy Demand (LoLo). The Centre is seeking funding for a further 8 years to train 60 students. The scope will be expanded beyond buildings to include energy demand in transport and industry directly related to the built environment. The new Centre will build on the existing four year programme: a one year Masters of Research in Energy Demand followed by a three year PhD. Training will be enhanced by an annual colloquium; international summer school; team building away days; seminar series'; creativity, communication and business training; and numerous other activities. Students will undertake placements with partners and in relevant overseas organisations. They will have a firm grounding in core skills and knowledge, but appreciate the multi-disciplinary perspective needed to understand the technical, economic and social factors that shape energy demand. The Centre's research will address new challenges within five themes, grouped around major research programmes: technology and systems, energy epidemiology, urban scale energy demand, building performance and process, and unintended consequences. This linkage ensures students' work gains momentum, is at the forefront of knowledge, has excellent resources, and is supported by a wide group of world class academics. The Centre will again be led by Profs Lowe and Lomas; together they have over 60 years of experience in energy and buildings. They will be supported by Academic Managers and Administrators and over 40 academic supervisors whose expertise spans the full range of disciplines necessary for EUED research: from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. An Advisory Board will help steer the Centre, whilst the wider group of 26 partners, representing policy, industry, academia and NGO interests, will aid students' training by: developing projects, offering mentoring, hosting students in their organisation, giving workshops and seminars, and direct funding. The proposed new Centre represents excellent value for money. The total cost to the EPSRC to train 60 students is less than the current Centre cost to train 40 students. However, the funding per student will rise by 20%, a result of the financial commitment of our partners and host institutions. The Centre aims to have an enduring impact through our graduates and their research. Short term impact will be achieved through students' engagement with industry, policy makers, NGOs and academia through the annual Colloquium, the international summer school, publications, the web-site and other social media, working with partners and through public engagement. In the long term our graduates will help transform the EUED sector through projects they lead, the students and colleagues they will train and the organisations they influence.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G059969/1
    Funder Contribution: 1,042,340 GBP

    It is widely acknowledged that the power industry faces a number of serious challenges including infrastructure, capacity constraints and the need to reduce greenhouse gas and other, but more complex issues have arisen from deregulation in many countries. This has resulted in a form of balkanisation that tends to cause additional stress to the legacy electricity grid, which has a structure based on centralised command and management of large scale generating plant, long-range high voltage transmission and local low voltage distribution networks. A number of interrelated problems on varying scales and at different levels need to be addressed, including the need for expensive standby capacity to meet peak loads, high capital cost and long lead-times for new plant, vulnerability to energy security threats of various kinds, and non-technical barriers to distributed energy resources (DERs) and more flexible and sophisticated energy services that might lead to greater energy efficiency.There are signs that a new paradigm for the modern electricity industry is being defined with a decentralised model based on recent and expected advances in DERs and electricity storage technology and, in particular, rapid developments in information and communication technology that will enable the wide scale deployment of smart devices. Particularly in the USA, this new concept - known as the smart grid - is attracting large scale investment and policy recognition, with some commentators comparing its development to that of the Internet and predicting change on a scale that could represent a paradigm shift of a similar kind for the electricity industry and its end-users. If this indeed occurs, then centralist theories, laws and techniques will at some point cease to be valid as the means of control.As well as being a new paradigm for business, the Internet has been considered to be a paradigm case for complexity theory and the parallel with the smart grid concept indicates the appropriateness of this new science as the means of articulating and answering the challenges it sets. The existing structure and organisation of the power industry provides the essential starting point and context for meaningful research into the mechanisms underlying the envisioned evolution, which may represent an example of a punctuated equilibrium. Complex systems thinking and modelling is all about the occurrence of such major, structural changes and the possible ways that the system may evolve under different policies and interventions. These factors combine to offer a unique opportunity to gain important insights into the emergence of self organisation and the evolution of complex adaptive systems in scenarios with extremely high relevance for a range of vital policy issues affecting energy security, carbon reduction and fuel poverty. Complexity science offers both a synergistic conceptual framework for the research questions raised and provides a set of tools and approaches particularly suited to their solution. This research will be based primarily on agent-based modelling, which enables simulation of the complexity arising from many non-linear, dynamic, history-dependent, multi-scale interactions with feedback effects that would defeat traditional equation-based and statistical modelling. Techniques not typical of previous modelling and simulation of this kind will be developed to reflect the special features of the problem domain, in particular the close coupling of socio-economic and technical systems, in which human and artificial intelligent agents are modelled and simulated together, and the need to find appropriate levels and forms of cognitive representation. The models will be based on evidence from the wealth of previous research into energy usage and supply issues and in particular from recent examples of small scale deployment of the technologies and mechanisms identified as key to the evolution of the smart grid as a complex adaptive system.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.