Powered by OpenAIRE graph
Found an issue? Give us feedback

RAS

Russian Academy of Sciences
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
20 Projects, page 1 of 4
  • Funder: French National Research Agency (ANR) Project Code: ANR-20-AORS-0002
    Funder Contribution: 191,000 EUR

    The RACE project addresses the impacts of rapid climate and environmental changes in the Arctic on infrastructure and pan-Arctic and regional population dynamics. By using best available datasets from in-situ and satellite observations and reanalyses together with climate model simulations under CMIP6 RACE will develop improved regional assessments of Arctic Social Indicators, which will be further used for the projections of population dynamics factors as well as demographic and life quality trends of Arctic communities. For the first time results of large-scale climate diagnostics and projections will be used and translated into social indicators and further into demographic variables by using socioeconomic and demographic models, thus providing accurate regional projections of the Arctic population dynamics which presently are routinely relaying exclusively on economy forecasts. The RACE work packages include accumulation and pre-processing of the available climatic, environmental, and socio-economic data for the last decades, which allows for the quantitative assessment of climate and environmental changes in the Arctic critical for the industrial activities and human well-being. They will be used for the development of regional population dynamics umbrella scenarios under different climate change scenarios and associated projections for environment and infrastructure. Of a special importance will the analysis of feedbacks between environmental factors, infrastructure and social indicators and case studies which will identify regions/cities at risk of rapid rates of mortality, net migrations, changes of population structure. RACE scientific results and deliverables will consist of databases of climate and environmental changes in the present and future climate, assessments of their impact onto community well being, projections of climate-mediated pan-Arctic and regional population dynamics and resulting recommendations on future sustainable development of the Arctic communities. RACE results will provide input of immediate relevance for the ongoing IPCC 6th Assessment Report, for Arctic Council Assessments and to the national Climate Change and Sustainability Reports and thus will help to define and implement the growing factor of a changing environment in building strategies for the social-economic development in the Arctic and pan-Arctic regions in the 21st century.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S008276/1
    Funder Contribution: 76,540 GBP

    One of the regions where current global warming is most pronounced is Siberia and the Russian Far East (SRFE). Inconveniently, this is also one of the regions with least coverage of climate records in international databases. As a consequence, it is extremely difficult to analyse and understand the spatial and temporal variations of climate change in SRFE that can provide context for past changes and current warming trajectories, and data are inadequate for syntheses that can aid evaluation of simulations of past climate-an important way to assess how well models perform at projecting the future, whether it be the impact on communities and ecosystems of forest fires or the fate of carbon currently stored in soils and peatlands. The lack of records from SRFE partly reflects that there are few well established, multi-year international collaborations between Russian institutes and international partners. While scientists at Russian institutes have access to large datasets and field sites and have high-quality staff conducting laboratory analyses, they often have less access to the latest analytical approaches and data quality control protocols-or indeed the language fluency currently required for high-impact international publications and data syntheses. This can generate an imbalance of influence within projects and lead to one-sided and/or short-term scientific interactions that do not have long-term direction and coherence. We will address both the science and science culture issues via a network of researchers from the UK and six institutes of the Russian Academy of Sciences in SRFE. Partners in this network have already expressed a strong interest to work together and pool resources to (1) synthesise existing data, (2) learn new methods, and (3) together create new high-quality records of climate and environmental change in this and future research projects. Our network is called DIMA ("Developing Innovative Multi-proxy Analysis"), because we will use multiple new approaches to get climate information from sediment records (proxies) to reconstruct climate change. Our partnership-building and collaboration have several aims. First an extant dataset that described past vegetational change, which has not yet reached an international audience, will be analysed by the DIMA groups to create value-added features (e.g., data formulated for climate-vegetation modelling exercises) prior to publication. Second, we will collect samples to apply a method new to this region for reconstructing past temperatures from insect remains in lake sediments; this will be underpinned by UK-based training of Russian collaborators in the use of the latest laboratory and statistical procedures during a month-long visit of three colleagues from SRFE to the UK. It will involve collecting modern reference samples and generating a high-quality long temperature record from western Siberia as proof-of-concept for an expanded programme. Project leader van Hardenbroek is a specialist in this field. The two selected Russian Project Partners have considerable experience in organising field campaigns and laboratory analysis and will provide the necessary personnel, support and infrastructure. The new data and the experience gained during this project will place the DIMA team in a competitive position to apply for larger collaborative project; the highly motivated team will be geared up to generate long-term climate records across SRFE, produce a high-quality regional temperature synthesis, and develop collaborations with, for example, groups using data compilations to explore climate-vegetation model performance (co-I Edwards current collaboration). This proposal addresses the UK government's expressed need for developing and maintaining strong science ties with key countries, including Russia and strengthening international collaborations outside Europe post-Brexit.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/R000670/1
    Funder Contribution: 419,315 GBP

    Our proposal unites a multidisciplinary team of researchers from mineralogy, palaeontology, deep-sea biology and genetics to provide an integrated picture of when and how some of the most remarkable environments on our planet were colonised by highly-specialised animals, and inform modern deep-sea conservation challenges. The discovery of hydrothermal vents in the deep sea during the late 1970s revolutionised our understanding of the limits of life on our planet. These explorations uncovered incredibly lush ecosystems supported by chemosynthesis, a carbon-fixation process previously deemed insignificant, and faunas with many novel adaptations to surviving in this dark habitat characterised by the ejection of extremely hot, toxic fluids from the seafloor. Despite their seemingly-hostile conditions, we now know that animals have thrived around vents for at least 440 million years, and that diverse taxonomic lineages have continually adapted to this environment over the course of Earth's history. Surprisingly, rather than functioning as evolutionary refuges in which ancient relict faunas have survived in isolation from large-scale environmental changes, evolution at vents appears to have occurred numerous times. This suggests that vents have an intriguing role as incubators of evolutionary novelty, their importance in evolution also highlighted by theories that life itself originated within this setting. Since their initial exploration, significant milestones have been achieved in surveying these ecosystems and in understanding the intimate interactions that modern vent faunas have with the microorganisms that support them. However, answers to fundamental questions of when animals first transitioned to occupy this environment, the processes driving the adaptation of new vent animals and the biological basis for vent colonisation are still lacking. A grasp of these principles is vitally important to understanding how animals adapt to unstable temperature regimes, and of how large-scale environmental changes affect the deep sea, the world's largest ecosystem. This is particularly pertinent today as the deep sea is increasingly affected by human activities, but how it responds to impacts such as climate change and mining operations is unknown. To gain vital evolutionary insights into the colonisation of hydrothermal vents, both in the modern ocean and throughout Earth history, we propose a comprehensive research programme guided by four hypotheses: H1) animals colonised hydrothermal vent environments soon after the Cambrian Explosion of life; H2) new vent habitat formation has repeatedly driven vent animal evolution over time; H3) ancient vent animals exhibited similar associations with microorganisms to modern vent animals to survive within harsh vent environments; and H4) adaptation to vent environmental regimes is evolutionarily rapid. We will assemble primary data for this project from field studies of key geological localities in Norway, Canada and Tasmania, which likely contain the oldest known bone-fide vent animals, and the southern Ural Mountains where a remarkable 100 million year fossil history of ancient vents is preserved. Together, these regions contain some of the best-preserved ancient hydrothermal vent deposits in the world. Collected fossil samples will be subjected to new detailed palaeontological investigations, and high resolution sulphur isotopic analyses. To investigate recent and ongoing adaptation at modern hydrothermal vents we will work on samples of traditional non-vent fauna that we can observe colonising new hydrothermal systems, using advanced DNA techniques.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V055593/1
    Funder Contribution: 930,843 GBP

    Nuclear magnetic resonance (NMR) is one of the most versatile forms of spectroscopy in the physical sciences, with applications spanning the full range from fundamental physics, quantum theory, chemistry, materials science and biochemistry to structural biology and clinical applications (especially in the form of magnetic resonance imaging, MRI). In most cases, NMR spectroscopy employs the strongest possible magnetic field, since this usually generates the strongest signals with high resolution of the different chemical sites of the atomic nuclei. Nevertheless, there are circumstances in which it is desirable to perform NMR over a range of magnetic fields, including the ultralow field regime, in which magnetic shielding is used to achieve very small magnetic fields over three orders of magnitude smaller than the earth's magnetic field. NMR in this ultralow field regime is very special in several ways. Firstly, the information content of the NMR spectrum is determined not by chemical shifts but by spin-spin couplings. Secondly, the line width in this regime is not governed by the magnetic field inhomogeneity, as in ordinary NMR, but by dissipation effects (relaxation). Extremely narrow linewidths (millihertz) are often achieved. Thirdly, the different species of nuclear spins are tightly coupled in the ultralow magnetic field regime, giving rise to the special phenomena such as heteronuclear long-lived states, which do not exist in larger magnetic fields. Fourthly, optical magnetometry techniques may be used to detect the magnetism of the nuclear spins, as opposed to electromagnetic induction, which is used in conventional NMR. The zero-to-ultralow field (ZULF) regime therefore offers a special form of NMR which has a quite different nature to ordinary NMR spectroscopy, and whose features and possibilities are only just starting to be explored. There is currently no equipment in the UK which allows observation of NMR signals in the ultralow magnetic field regime. The proposed research involves the construction of a device which shuttles a sample in a rapid and highly controlled way between the high-field region of an ordinary NMR magnet and a magnetically shielded chamber, equipped with optical magnetometers for the detection of the NMR signal in the ZULF regime. This equipment will allow us to explore the spin dynamics in the ZULF regime with great precision and also exploit the ZULF regime as part of a high-field NMR procedure. This allows numerous multidimensional NMR experiments in which the advantages of both regimes may be combined. In addition the equipment allows the possibility to explore NMR relaxation over a very wide range of magnetic fields, allowing the probing of molecular motion over an extremely wide range of timescales. In addition the equipment will permit the development of advanced methodology for manipulating nuclear spin systems in the ZULF regime, such as the development of "ZULF decoupling" sequences which cause the system to behave as if spin-spin couplings between nuclei of different isotopic types are suppressed. This will make the ZULF NMR signals narrower, more informative, and easier to interpret. The proposed equipment will be world-unique and will be made available to the UK scientific community as a research facility. A workshop and training course will be provided during the final stages of the research project in order to facilitate the transfer of knowledge on this special form of NMR to UK scientists.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H006907/1
    Funder Contribution: 197,819 GBP

    The fundamental principle behind research and development in the nanosciences is the need to manipulate the fundamental structure and behaviour of materials on the atomic and molecular scale. The aim in this proposed collaborative project is to investigate the integration of optical nanofibres as interface tools into novel nanoscale environments, including ion traps, cold atom traps and optical tweezers, for the manipulation and control of single nanoparticles. Such systems could have wide-ranging applications from biomedical instrumentation to quantum information technologies.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.